
		
			Preface
		

		
			
				A utility without a manual is of no utility at all.
			

		

		
			This is a guide for writing UNIX manuals in the mdoc language.  If you're new to writing UNIX
			manuals, or you want to learn about best practises for high-quality manuals, this book may benefit your work.
		

		
			To those unfamiliar with UNIX, mdoc is a
			language for documenting utilities, programming functions, file and wire formats, hardware device interfaces, and so on.
			By a language I mean a structured, machine-readable document format such as 
				HTML, the primary language of web pages; or RTF, used by word
			processors.  man is the utility for querying documents in mdoc and other languages, collectively called man pages.  
		

		
			The following, for example, is a fragment of man output for the cat command.
		

		
			
				NAME

				cat — concatenate and print files

			
				SYNOPSIS

				
					
					
					
						
								
								cat
							
								
								[-benstuv] 
								[file ...]
							
						

					
				

			

			
				DESCRIPTION

				The cat utility reads files sequentially, writing them to the standard output. The file operands are processed in command-line order.  If file
				is a single dash (‘​-') or absent, cat reads from
				the standard input.
			

		

		
			Why mdoc?  After all, there are plenty of other UNIX manual languages out there, from the
			historical man to DocBook.  In short, mdoc is:
		

		
				
				portable, as any modern UNIX system can format it without needing clumsy toolchains;
			

				
				expressive, capturing the semantic content of manpages instead of just presentation cues;
			

				
				concise, making line-based source control painless; and
			

				
				well-documented, well-supported, and actively maintained by a community of knowledgable developers.
			

		

		
			No other format can boast all of these points at once.
		

		
			In fact, although I've mentioned UNIX several times already, mdoc isn't exclusively tied to
			UNIX.  Although UNIX and mdoc are historically linked, open source mdoc tools exist for any operating system.  Furthermore, the documentation capabilities of
			mdoc apply to computing systems in general  not just UNIX.
		

		
			In this book, however, I'll assume you are casually familiar with man and
			its output.  This will allow us to focus on manuals with the same formatted output in mind.  Thus, if you're unfamiliar
			with the man utility, this is a good time to read an introductory text on
			the subject (such as a UNIX beginner's guide), or at the very least, read the output of man
				man (the manual page of the man command).
		

		
			This is not a canonical reference! The mdoc language is not standardised.  For official
			reference, consult the manual distributed with your target computer system with man mdoc.
			This work primarily addresses the elements of mdoc common to any UNIX deployment, noting
			common pitfalls in portability.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Tutorial Introduction
		

		
			Let's begin with practical examples of mdoc.
		

		
			The intended audience of this part is somebody who has never written a mdoc manual.  Although
			you may be tempted to jump to the chapter relevant to your manual type (for example, a command or function library),
			it's best to read the chapters in order.  I'll explain mdoc syntax as we go.
		

		
			If you've already written a few manuals, you may want to read this part anyway: beyond explaining technical mdoc language concepts by example, I'll also introduce some best practises and discuss
			portability between various mdoc environments.
		

		
			I'll frequently refer to the screen output of mdoc documents as displayed with the UNIX man utility.  Furthermore, I'll refer to command invocation in the
			traditional UNIX way  on the command line.  In short, a bit
			of UNIX knowledge will help to avoid confusion.  But I'll briefly introduce invocation syntaxes as the need arises.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Commands
		

		
			Commands are the way in which a user operates her computer.  Already I've noted the man command: if you've interacted with a UNIX system, you've probably run at least man intro or man man to learn about your system.
		

		
			In this chapter, I'll discuss how to document these commands with mdoc.  
		

		
			This may be unfamiliar if you're accustomed to graphical interfaces  all of our examples will refer to
			command-line, text-based commands.  If your target environment isn't a UNIX system, it's a good idea to read these
			examples anyway, as as they will expose the rudimentary structure of the mdoc language.  As
			mentioned before, reading an introductory text on UNIX will help avoid confusion.
		

		
			Let's begin by making a mental checklist for the criteria that make a good manual for a command.  This checklist arises
			by inverting what a manual reader expects in opening a manual: what does the command do and how do I operate it?
		

		
				
				Do I describe the calling syntax of the command?
			

				
				Do I describe each flag and argument of the command?
			

				
				Do I describe the command's operation?
			

				
				Do I describe the command's exit status?
			

				
				Do I describe referenced files and environment variables?
			

		

		
			Above all, the best litmus test is whether a colleague or friend can read your manual and be able to use your command
			without any assistance on your part.  Don't be discouraged by how this can take several tries to get right!
		

		
			I'll begin with a simple command, hi, which prints hello, world to
			the screen.  I'll then add some command-line arguments to this command.  By the time you finish this chapter, you should
			have a grasp of mdoc syntax and some of its more widely-used macros.
		

		
			In this text, I'll refer to the invocation of commands as cmd flag farg arg.  Here, cmd refers to the command invocation
			name, flag is a flag (or switch) to that command, farg is an
			argument to a flag (not all flags have arguments), and arg is an argument to the command.
		

		
			The dash in front of flag indicates a flag, while the square brackets around flag farg indicate an optional
			part of the invocation.  Since arg is not bracketed, it is a mandatory part of the
			invocation.
		

		
			This convention is formalised by the POSIX.1-2008 standard (Base
			Definitions, sec. 12.1), so you can expect to see it often in the UNIX world.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 22:24:07 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Simple Command
		

		
			Consider a simple UNIX command hi that prints hello, world and
			exits.  Let's create a manual page hi.1 documenting this command.  In this example, I'll begin
			with the full manual.  In later examples, we'll build up the manual piece by piece.
		

		
			.Dd May 30, 2011
			

			.Dt HI 1
			

			.Os
			

			.Sh NAME
			

			.Nm hi
			

			.Nd print \(dqhello, world\(dq
			

			.Sh SYNOPSIS
			

			.Nm
			

			.Sh DESCRIPTION
			

			Print
			

			.Qq hello, world
			

			and exit.
		

		
			How to display this manual page depends on the system you're using.
		

		
			Traditionally, the command for formatting UNIX manuals for a terminal
			is nroff.  For now, let's stick with that.
		

		
			To display output, you must invoke nroff as nroff
				-mandoc file.  The mandoc flag indicates that input is in mdoc.  Hereafter, I'll refer to nroff
			simply as the formatter to avoid confusion, as there are many available mdoc
			formatters.
		

		
			
				NAME

				hi — print "hello, world"
			

			
				SYNOPSIS

				
					
					
					
						
								
								hi
							
								
							
						

					
				

			

			
				DESCRIPTION

				Print “hello, world” and exit.
			

		

		
			Let's start by studying the input and output.  We can see most of the text translated into output, for instance, the
			capitalised NAME input is left-justified and in bold text.  Same with 
				SYNOPSIS and DESCRIPTION, although the .Sh text
			before this terms is missing.  We can even see the output sentence Print "hello, world" and
				exit spread over lines 1012:
		

		
			Print
			

			.Qq hello, world
			

			and exit.
		

		
			Let's take a closer look at this fragment.
		

		
			The .Qq is part of mdoc's instruction syntax.  Input lines
			beginning with a dot are instructions to the formatter called mdoc macros, or just macros for short.  The macro name is
			a terse two or three-character word following the dot, for example, Qq.
			The name of a macro tersely hints at its function.  The words following the Qq to the end of line are arguments in the scope of the macro.
		

		
			Scope, a technical term in the field of programming languages, refers to the body of input within the context of an
			instruction or variable.  In mdoc, a macro's scope is the block of text and instructions in
			the formatting context of that macro.  Looking at the input and output, we can infer the scope of Qq by seeing what's surrounded by quotes (the formatting, in this
			case).
		

		
			.Qq hello, world
		

		
			
				Print “hello, world” and exit.
			

		

		
			As we explore more and more macros in this book, we'll see that each macro follows one of a handful of scope rules.
			It's already clear that Qq is limited in scope to its invocation line.
			But notice that the formatter recognised the content between Sh macros
			as requiring indentation.  So it's clear that mdoc also has a concept of multi-line scope.  In
			fact, Sh has both line arguments, for the name of the section; and
			multi-line arguments, for section content.
		

		
			.Sh SECTION 1
			

			Section text.
			

			.Sh SECTION 2
			

			New section text.
		

		
			Furthermore, the existence of Qq within the Sh scope means that scopes may be nested.  In the next section
			we'll see how multiple macros may even be specified on a single line.
		

		
			.Sh SECTION 1
			

			Section text.
			

			.Sh SECTION 2
			

			.Qq Section text nested in a quote.
		

		
			We can visualise this scoping as follows, with an outer scope
			and inner scope:
		

		
			.Sh SECTION 2
			

			.Qq Section text nested in a quote.
		

		
			Now let's return to hi.1 with this new knowledge of macros and scopes.
		

		
			We see seven macros in total, Dd, Dt, Os, Sh, Nm, Nd, and Qq.  We know now that Qq encloses its arguments in double-quotes, Sh begins a named section with indented multi-line arguments.  
		

		
			Of the remaining macros, Dd accepts the last modification date of the
			manual in month day, year format.  Dt refers to the manual's
			title, HI, and its category, 1.
			Numbered manual categories are UNIX conventions, but applicable to any operating system.  We'll explore more standard
			categories throughout this book.  Note that HI is uppercase: by convention, Dt should always accept a capitalised document title.  We'll talk
			more about titles and sections in later chapters of this book.  For now, let's assume that a category number identifies
			the topic of the manual, where 1 refers to utilities.
		

		
			Next, Os indicates the operating system of the system running the
			formatter.  If left unspecified, the formatter will return the current operating system (e.g., OpenBSD 4.9, Linux 2.6.32-5, or Microsoft
				Windows XP).
		

		
			.Dd May 30, 2011
			

			.Dt HI 1
			

			.Os \" Current operating system.
		

		
			Note that text following the \" marker is an mdoc comment,
			which has the following syntax:
		

		
			Text. \" Comment to end of the line.
			

			.\" Extending across the full line.
		

		
			Comments are line-scoped, like Qq:
		

		
			.\" .Sh NAME
		

		
			Moving along, Nm accepts the manual's name.  This differs from the
			title, Dt, in that a single manual may document multiple components.
			We'll see examples of this in later chapters.  Finally, Nd accepts a
			brief, one-line description of the command.
		

		
			.Sh NAME
			

			.Nm hi
			

			.Nd print \(dqhello, world\(dq
		

		
			You can see that we re-invoke Nm in the SYNOPSIS, only without arguments.  The formatter is smart enough to fill in its argument
			with the last supplied argument, in this case being hi.
		

		
			Since our simple command has no command-line arguments, its invocation is simply the command name.
		

		
			.Sh SYNOPSIS
			

			.Nm
		

		
			Piecing this all together, we now have the following.
		

		
			.Dd May 30, 2011
			

			.Dt HI 1
			

			.Os
			

			.Sh NAME
			

			.Nm hi
			

			.Nd print \(dqhello, world\(dq
			

			.Sh SYNOPSIS
			

			.Nm
			

			.Sh DESCRIPTION
			

			Print
			

			.Qq hello, world
			

			and exit.
		

		
			In this example, you've noticed that \(dqhello, world\(dq has the same behaviour of the Qq invocation.  In mdoc, quotation
			marks signify literal strings.  Thus, we used an escape character \(dq to render ".
		

		
			You may ask why not just use Qq, such as
		

		
			.Nd print
			

			.Qq hello, world
		

		
			For the time being, assume that Nd must have its scope on the
			invocation line.  Strictly-speaking, we could have written 
		

		
			.Nd print "hello, world"
		

		
			but this encourages dangerous behaviour in assuming that quoted arguments may not affect output.  This isn't always the
			case!  We'll see later how quoted terms on macro lines change the grouping of arguments  at times non-intuitively.
		

		
			Before moving on to the next section, let's look quickly over our checklist for a well-formed manual.
		

		
				Did I describe the calling syntax of the command?

				Yes.  It was only the name of the macro (no arguments or flags).

				Did I describe each flag and argument of the command?

				There were none, so yes.

				Did I describe the command's operation?

				Yes, it prints hello, world and exits.

				Did I describe the command's exit status?

				No, we only mentioned that it exits.

				Did I describe referenced files and environment variables?

				This is not applicable.

		

		
			To the effect of the exit status, let's modify the DESCRIPTION slightly for clarity.
		

		
			.Sh DESCRIPTION
			

			Print
			

			.Qq hello, world
			

			and exit 0.
		

		
			Of course, our command must actually do so!  For simplicity's sake, let's assume that this is the case.
		

		
			With our simple, well-documented example in mind, let's move on to a more realistic UNIX command.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 22:24:07 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Elaborate Command
		

		
			Most UNIX commands have flags, arguments, return values, environmental variables, and so on.  So let's expand upon our
			example to include arguments for writing to an output file and a flag for outputting in uppercase letters.  Furthermore,
			we'll accept an optional prefix string on the command-line, and return non-zero on failure.
		

		
			This changes two parts of our manual: the SYNOPSIS section, where we'll record the invocation
			syntax of our command; and the DESCRIPTION, where we'll describe the command-line options.
			We'll also add a new section, EXIT STATUS, to describe the non-zero exit on failure.
		

		
			Let's start by documenting our command-line options in the SYNOPSIS section:
		

		
			.Sh SYNOPSIS                  
			

			.Nm                           
			

			.Op Fl C                      
			

			.Op Fl o Ar output            
			

			.Op Ar prefix                 
		

		
			The output renders as follows:
		

		
			
				SYNOPSIS

				
					
					
					
						
								hello
								
								[-C] 
								[-o 
									output] 
								[prefix]
							
						

					
				

			

		

		
			Already, we begin to see the output take shape with the C and o
			characters, and the prefix.  It's also clear that the Op macro surrounds its arguments in square brackets, just as Qq surrounded its line in double-quotes.
		

		
			But how did the formatter know to prefix the C and o with a
			dash, or underline the arguments output and prefix?  
		

		
			It's obvious this has something to do with Fl and Ar.
		

		
			Macro lines may in fact consist of multiple macros  sometimes nesting further macros, sometimes closing prior
			scopes to begin one anew.  The Fl and Ar words are macros nested within the scope of Op.  However, while Op
			contains both of these child scopes, the Ar macro closes out the Fl scope and begin its own.
		

		
			.Op 
				Fl C
		

		
			.Op 
				Fl o
				Ar output
		

		
			.Op 
				Ar prefix
		

		
			Outer parts are an outer scope, while inner parts are an inner scope.  Now it's easy to see how Fl prefixes only the C with a dash
			and not the arguments following: its scope is closed out by Ar.
		

		
			Note that to document a flag Ar, we would need to quote its arguments as Fl "Ar" (we'll later learn how to escape arguments with zero-width spaces to accomplish
			the same).  As there are many mdoc macros, a popular novice mistake is to unknowingly invoke a
			macro when expecting to print text.
		

		
			With our command syntax documented, let's document the arguments themselves.  To do so, we detail the meaning of flags
			and arguments in the DESCRIPTION section.
		

		
			The
			

			.Nm
			

			function prints
			

			.Qq hello, world
			

			and returns.
			

			.Pp
			

			Its arguments are as follows:
			

			.Bl -tag -width Ds
			

			.It Fl C
			

			Print only uppercase letters.
			

			.It Fl o Ar output
			

			Write to file
			

			.Ar output .
			

			.It Ar prefix
			

			Prefix the output with
			

			.Ar prefix .
			

			.El
		

		
			Immediately, we see the introduction of several new macros: Pp, Bl, It, and El.  More interestingly, we notice the text on the Bl begins with a dash, just as when passing arguments on a
			command line.  This is the first instance of a macro that accepts flags.  
		

		
			The rendered output of this fragment is as follows.
		

		
			Its arguments are as follows:
			
					
					-C

					
					Print only uppercase letters.

					
					-o output

					
					Write to file output.

					
					prefix

					
					Prefix the output with prefix.

			

		

		
			It should be clear that the Pp macro, which always stands alone,
			introduces a vertical paragraph break.
		

		
			Earlier, I introduced the concept of a multi-line scope for Sh, which
			was closed and re-opened by subsequent invocations of Sh.  In this
			fragment, the Bl macro (for begin list) is explicitly closed
			out by the El macro (end list).  This is an example of explicit
			scope closure, versus the implicit scope closure of Sh sequences.
		

		
			Predictably, the Bl and El enclosure consists of list items, begun by the multi-line It macro lines.  Like Sh, the It macro has its scope closed by subsequent invocations of It.  As expected, its scope also closes when the surrounding list
			is closed with El.
		

		
			Until now, we've discussed only macros and macro arguments.  But a handful of macros  Bl included  also accept flags which themselves may have
			arguments.  In our example, the tag flag to Bl stipulates a tagged list.  A tagged list entry consists of two parts: a tag and data,
			similar to the <DL> descriptive lists in HTML
			consisting of a key and data.  Bl accepts a second flag, width, which accepts the argument Ds.  This instructs the
			formatter that the tag portion of the list has width Ds, which is shorthand for default
			spacing.
		

		
			Next, let's look closer at the input line 
		

		
			.Ar prefix .
		

		
			Note that it's correctly rendered with the period flushed up against the text, whereas the period is space-separated in
			the input.  (The period itself isn't font-decorated, although this is difficult to see in the media you're reading.)
		

		
			
					
					prefix

					
					Prefix the output with prefix.

			

		

		
			By making the punctuation a separate argument, we distinguish it from the term prefix, and
			thus it is not underlined.  The formatter is smart enough to distinguish standalone punctuation.  When writing an mdoc manual, punctuation should always be separated from macro arguments unless it's part of
			the argument itself.  This allows the formatter to correctly intuit end-of-line spacing.
		

		
			If we hadn't done so, the formatter wouldn't distinguish period from word.  This is more intuitive when re-using the
			familiar Qq.
		

		
			.Qq first .
		

		
			.Qq second.
		

		
			We can now see the difference in the placement of punctuation:
		

		
			
				“first”. 
				“second.”
			

		

		
			Let's piece this all together.  You'll recognise the Dd, Dt, and Os
			macros from the last section, although the Dt argument has changed
			with our command name.
		

		
			.Dd May 30, 2011
			

			.Dt HELLO 1
			

			.Os
			

			.Sh NAME
			

			.Nm hello
			

			.Nd print \(dqhello, world\(dq
			

			.Sh SYNOPSIS
			

			.Nm 
			

			.Op Fl C 
			

			.Op Fl o Ar output 
			

			.Op Ar prefix 
			

			.Sh DESCRIPTION
			

			The
			

			.Nm
			

			function prints
			

			.Qq hello, world
			

			and returns.
			

			.Pp 
			

			Its arguments are as follows:
			

			.Bl -tag -width Ds 
			

			.It Fl C
			

			Print only uppercase letters.
			

			.It Fl o Ar output 
			

			Write to file
			

			.Ar output .
			

			.It Ar prefix
			

			Prefix the output with
			

			.Ar prefix .
			

			.El
		

		
			Notice that we don't repeat the Op macros in the DESCRIPTION, although we stipulate them in the SYNOPSIS.  This is
			because we document the flags and arguments themselves in the DESCRIPTION, not the calling
			syntax of the command.
		

		
			Finally, let's accomodate for command errors by stipulating the exit status of the command.  To do this, we add a new
			section to the end of the manual, EXIT STATUS, consisting of a single macro.  We didn't add
			this to hi.1 because we didn't stipulate any exit state; however, it's good practise to always
			include this section, even if your command only exits in one way.
		

		
			.Sh EXIT STATUS
			

			.Ex -std
		

		
			The Ex macro is special in that it always accepts a flag, std.  This is by convention.  Although you can specify an argument to Ex, it works like Nm without arguments in that it reproduces the name of the document as last invoked with Nm.  It prints a standardised message about the exit status of
			the command.
		

		
			
				EXIT STATUS

				The hello utility exits 0 on success, and >0 if an error occurs.
			

		

		
			With our manual complete, let's go over our checklist.
		

		
				Did I describe the calling syntax of the command?

				Yes, including flags and arguments.

				Did I describe each flag and argument of the command?

				Yes for all flags and arguments.

				Did I describe the command's operation?

				Yes, that it prints hello, world.

				Did I describe the command's exit status?

				Yes, that it returns a non-zero exit code on failure.

				Did I describe referenced files and environment variables?

				This is not applicable to this manual.

		

		
			Of course, most real manuals have many other useful bits of information, such as author names, referenced standards,
			files, and so on.  I'll describe these in detail in later chapters of this book.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 22:57:49 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Case Study
		

		
			I now introduce a case study of a real-world manual, in particular the echo utility from OpenBSD.  The original file
			may be viewed on-line at src/bin/echo/echo.1, file version 1.20.  I
			choose this mainly because of its simplicity.
		

		
			.\"$​OpenBSD: echo.1,v 1.20 2010/09/03 09:53:20 jmc Exp $​
			

			.\"$​NetBSD: echo.1,v 1.7 1995/03/21 09:04:26 cgd Exp $​
		

		
			These initial comments are automatically created by the source-control system cvs, which fills in information about the last editor.  I'll talk about revision control and
			those funny dollar-sign enclosures in Part 3.  These particular comments indicate that the file
			was initially imported from NetBSD in 1995, where it was last edited by
			cgd (a system name, not the user's real name).  It was last edited in OpenBSD, its current
			form, by jmc in 2010.
		

		
			If you're keeping your manual under source control, it's usually a good idea to begin your file with a similar line.
		

		
			.\"$​Id$
		

		
			A tab character separates the comment marker from the text.  Again, this will be covered later in this book 
			don't worry if it looks strange.
		

		
			.\" Copyright (c) 1990, 1993
			

			.\"	The Regents of the University of California.  All rights reserved.
			

			.\"
			

			.\" This code is derived from software contributed to Berkeley by
			

			.\" the Institute of Electrical and Electronics Engineers, Inc.
			

			.\"
			

			.\" Redistribution and use in source and binary forms, with or without
			

			.\" modification, are permitted provided that the following conditions
			

			.\" are met:
			

			.\" 1. Redistributions of source code must retain the above copyright
			

			.\"    notice, this list of conditions and the following disclaimer.
			

			.\" 2. Redistributions in binary form must reproduce the above copyright
			

			.\"    notice, this list of conditions and the following disclaimer in the
			

			.\"    documentation and/or other materials provided with the distribution.
			

			.\" 3. Neither the name of the University nor the names of its contributors
			

			.\"    may be used to endorse or promote products derived from this software
			

			.\"    without specific prior written permission.
			

			.\"
			

			.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
			

			.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
			

			.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
			

			.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
			

			.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
			

			.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
			

			.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
			

			.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
			

			.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
			

			.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
			

			.\" SUCH DAMAGE.
		

		
			This long comment is the license and copyright of the source file.  Of course, our use of this source file is compatible
			with the license, as may be read from the text itself!
		

		
			.\"	@(#)echo.1	8.1 (Berkeley) 7/22/93
		

		
			This comment is of historical note.  The @(#) sequence was inserted by the sccs utility (Source Code Control System).  Although this utility
			is part of POSIX.1-2008, it has mostly been replaced by cvs.  You'll probably never encounter this string in your own
			manuals, so it's safe to disregard.
		

		
			At this point the manual content itself begins.
		

		
			.Dd $​Mdocdate: September 3 2010 ​$
			

			.Dt ECHO 1
			

			.Os
		

		
			This indicates that the manual's title is ECHO in category 1
			(utilities) for the current installed operating system.  The $​Mdocdate$ enclosure is
			similar to that as defined at the top of the file with $​OpenBSD$.
		

		
			.Sh NAME
			

			.Nm echo
			

			.Nd write arguments to the standard output
		

		
			This documents a single command, the echo command, which does as
			mentioned.
		

		
			.Sh SYNOPSIS
			

			.Nm echo
			

			.Op Fl n
			

			.Op Ar string ...
		

		
			The command accepts a single optional flag, n, and an arbitrary number of optional
			arguments string.  Note that re-stating the command name for the Nm is superfluous in this case.
		

		
			.Sh DESCRIPTION
			

			The
			

			.Nm
			

			utility writes any specified operands, separated by single blank
			

			.Pq Sq \ \&
			

			characters and followed by a newline
			

			.Pq Sq \en
			

			character, to the standard
			

			output.
			

			When no operands are given, only the newline is written.
		

		
			The DESCRIPTION opens with a brief explanation of the utility and its output.  The strange set
			of backslash-escaped characters \ \& is required to make the doubly-nested macros Pq and Sq
			(parenthesise and single-quote, respectively) correctly enclose a single space.
		

		
			.Pp
			

			The options are as follows:
			

			.Bl -tag -width Ds
			

			.It Fl n
			

			Do not print the trailing newline character.
			

			.El
		

		
			This follows the standard form of documenting flags and arguments as a term/definition list.  Each one  in this
			case only one  is documented in alphabetical order.
		

		
			.Sh EXIT STATUS
			

			.Ex -std echo
		

		
			Notes the standard exit sequence.  Note that the argument to Ex is
			superfluous, as only one command is listed for the manual.
		

		
			.Sh SEE ALSO
			

			.Xr csh 1 ,
			

			.Xr ksh 1 ,
			

			.Xr printf 1
		

		
			Although these weren't cited in other sections of the manual, the author felt it necessary to link to them.  This is
			probably because both csh and ksh include internal
			implementations of a function by the same name.
		

		
			.Sh STANDARDS
			

			The
			

			.Nm
			

			utility is compliant with the
			

			.St -p1003.1-2008
			

			specification.
			

			.Pp
			

			The flag
			

			.Op Fl n
			

			is an extension to that specification.
			

			.Pp
			

			.Nm
			

			also exists as a built-in to
			

			.Xr csh 1
			

			and
			

			.Xr ksh 1 ,
			

			though with a different syntax.
		

		
			This last section fully describes the utility's conformance to the POSIX
			standard, which is very important to those writing portable utilities.  The St macro expands into the relevant standard's full name, IEEE Std
				1003.1-2008 (“POSIX.1”).  For a full list of standards, consult your local documentation for
			the macro.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/05 00:39:38 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Functions
		

		
			Programming functions are a significant part of the UNIX canon, from the system call interface to the C library.  If you're a C or C++ developer, chances are you've at least glanced
			through the manuals of functions such as socket, printf, or memmove.
		

		
			In general, the mdoc macros used for documenting programming functions are the same as those
			used for Commands; however, there are some domain-specific bits to annotate the
			various parts of function versus command invocation.  You'll see that each command invocation macro, such as 
			Fl for a flag, has an analogue for programming functions, such as
			the Fa, for a function argument.
		

		
			The mdoc format is used primarily for the C language
			and Fortran, but it works with C++, Perl, Tcl, and other imperative languages.  In fact, most any language with
			functions (or subroutines) and variables will work, typed or not.  In this book, I focus exclusively on the C language.
			This is due to the overwhelming presence of C libraries and functions documented with mdoc.
		

		
			Before beginning, we need to change our mental checklist for a complete manual.  Since function manuals can document
			more than just function parts, our manual must grow to account for complexity.
		

		
				Do I describe the preprocessing and linking information?

				Do I describe the calling syntax of each function and variable?

				Do I describe the type of each function and variable?

				Do I describe each argument in each calling syntax?

				Do I describe each function's operation?

				Do I describe each function's side effects?

		

		
			A function is any callable instruction, be it a C function, routine, or macro.  A variable may also be a C variable or
			macro.  I'll consistently use the function and variable terminology in this book.
		

		
			In general, you don't have to be knowledgeable of C to understand this section, but it helps to have a grasp of basic
			programming structure, such as functions, function prototypes, and header files.  In any event, I'll refer to a header
			file as a text file consisting of function prototypes.  Header files for the C language, such as in our examples, end
			with the .h suffix.  A C function prototype indicates the calling syntax of a function, such
			as the following.
		

		
			int
			

			isspace(int c);
		

		
			In this, the C function isspace, notationally referred to as isspace, has a single argument int c (an integer named c) and returns a value of type int (another integer).  Multiple
			arguments are comma-separated.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/05 16:50:11 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Simple Function
		

		
			Let's study a simple C function, hi, which prints hello, world
			just like in prior sections.  We begin with the familiar first macros.
		

		
			.Dd May 30, 2011
			

			.Dt HI 3
			

			.Os
			

			.Sh NAME
			

			.Nm hi
			

			.Nd print \(dqhello, world\(dq
		

		
			All that's changed is the manual category, from 1 to 3.  We'll discuss
			manual categories later in this book.  Suffice to say that programming functions and libraries (not system calls!) are
			in category 3.
		

		
			The calling syntax of our function is documented in the SYNOPSIS section.  Assume that our
			function prototype is within the header file hi.h as void
				hi(void), which, in non-programming terms, declares that a function hi
			accepts no arguments and does not return a value.
		

		
			.Sh SYNOPSIS
			

			.In hi.h
			

			.Ft void
			

			.Fn hi
		

		
			This introduces three unfamiliar macros.  The In macro specifies an
			include file that interfacing programmes will need to include.  The Ft
			and Fn macros collectively document the function (return) type and
			function name.  Since not all languages have return types, the Ft
			macro is optional in this context.
		

		
			
				SYNOPSIS

				#include <hi.h>

				void
				

				hi();
			

		

		
			By now it comes as no surprise that Ft is scoped to the end of its
			line, as is Fn in this example.  In fact, both of these macros are
			syntactically similar to the Ar and Fl found in the first chapter: their scopes are closed by subsequent macros on the same line.
		

		
			Since our function has no arguments or return values, all we need to do is add some bits in the DESCRIPTION section to complete this manual. 
		

		
			.Dd May 30, 2011
			

			.Dt HI 3
			

			.Os
			

			.Sh NAME
			

			.Nm hi
			

			.Nd print \(dqhello, world\(dq
			

			.Sh SYNOPSIS 
			

			.In hi.h
			

			.Ft void 
			

			.Fn hi
			

			.Sh DESCRIPTION 
			

			The
			

			.Fn hi
			

			function prints
			

			.Qq hello, world 
			

			and returns.
			

			.Pp
			

			It has no arguments.
		

		
			Here, you'll notice a difference between a function and command manual.  It's clear that we refer back to our invoked
			command using Fn instead of Nm.  Why is this?  The Nm macro, when used in
			the body of a manual, refers to the command name, not the manual name, as we used Nm to annotate that utility name in the SYNOPSIS.  In functions, we
			use the Fn macro.  The difference is that Fn won't repeat the manual name if used without arguments.  This complexity is simply the
			result of poor planning in the mdoc language.
		

		
			Let's visualise the output so far:
		

		
			
				NAME

				hi — print "hello, world"
			

			
				SYNOPSIS

				#include <hi.h>
				

				void
				

				hi();
			

			
				DESCRIPTION
 
				The hi() function prints “hello, world” and returns.
				

				It has no arguments.
			

		

		
			Lastly, let's stipulate the function return value in its own section, RETURN VALUES.  This
			mirrors the EXIT STATUS introduced for hello.1.  Although we don't
			have a return value, it's good practise to include this section anyway.
		

		
			.Sh RETURN VALUES
			

			The
			

			.Fn hi
			

			function does not return a value.
		

		
			Although this example is instructive, it's quite simple.  Let's review our checklist before moving on.
		

		
				Did I describe the preprocessing and linking information?

				Yes, a header file.  There is no linking information.

				Did I describe the calling syntax of each function and variable?

				Yes, the hi function.

				Did I describe the type of each function and variable?

				Yes, as hi has neither type nor value.

				Did I describe each argument in each calling syntax?

				This does not apply, as it has none.

				Did I describe each function's operation?

				Yes, in that it prints hello, world.

				Did I describe each function's side effects?

				This does not apply, as it has none.

		

		
			Very few real-world functions are so simple.  In the next section, we introduce a more practical function with types and
			arguments.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2014/04/07 21:27:38 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Elaborate Function
		

		
			Let's also study a function form of the elaborate command example.  Again, I'll use C as my example.  Since this is a
			bit more involved, you may feel a little lost if you're not familiar with C programming.  I'll keep the technical jargon
			to a minimum.
		

		
			Let's re-write hi as hello, accepting a Boolean (zero or one)
			integer of whether to capitalise, and an optional character string (a word) prefix.  Let's also stipulate an integer
			return value.
		

		
			.Sh SYNOPSIS
			

			.In hello.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "int C"
			

			.Fa "const char *prefix"
			

			.Fc
		

		
			If you're not familiar with C, the const char * and int parts
			are part of the C language.  Note that the C and prefix names
			haven't changed.
		

		
			The include file (In) and function return type (Ft) are unchanged but for the type (int
			instead of void).  I've added an explicit-scope macro pair Fo and Fc, syntactically like Bl and El, that
			encloses the function's arguments.
		

		
			This renders as follows.  Note that the formatter is smart enough to comma-separate the Fa macros.
		

		
			
				SYNOPSIS

				#include <hello.h>
				

				int
				

				hello(int C, const char *prefix);
			

		

		
			It's clear that the Fo macro accepts the function name (as Fn did for the simple example), but it also opens a function
			prototype scope.  This scope is closed by Fc.  The contained Fa macros are for function arguments.
		

		
			If you're wondering why I didn't use Fn as in the last section, it's a
			matter of readability.  Using Fn puts everything on one long line,
			such as the following.
		

		
			.Sh SYNOPSIS
			

			.In hello.h
			

			.Ft int
			

			.Fn hello "int C" "const char *prefix"
		

		
			This works with two arguments, but can quickly run into long lines.  In general, your mdoc
			manual shouldn't exceed 78 characters per line.  Shorter lines are useful when managing manuals in cvs or other version management systems  we'll discuss this in later
			sections of this book.
		

		
			The quoted arguments to Fa may seem superfluous, but each argument to the Fa, for the C language, refers to a type and variable name.  Since one may specify several
			arguments to a single Fa, the quotes are necessary for signifying a single argument type and
			name.
		

		
			.Sh SYNOPSIS
			

			.In hello.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "int C" 
			    "const char *prefix"
			

			.Fc
		

		
			This renders as follows, with the Fa scope highlighted.
		

		
			
				SYNOPSIS
 
				#include <hi.h>
				

				void
				

				hello(int C, 
				const char *prefix);
			

		

		
			In the C language, function prototypes don't necessarily need named function arguments.  However, it's good practise to
			name arguments when documenting them in the SYNOPSIS so that we can consistently refer to them later on in the
			manual.  Let's refer to them now in the DESCRIPTION, where we document our arguments.
		

		
			Note that there are no set conventions for documenting function arguments in the DESCRIPTION
			body.  Sometimes this is done within the flow of a regular sentence.  Other times, as below, we'll introduce each
			argument as part of a list.
		

		
			.Sh DESCRIPTION
			

			The
			

			.Fn hello
			

			function prints
			

			.Qq hello, world .
			

			.Pp
			

			It accepts the following arguments:
			

			.Bl -tag -width Ds
			

			.It Fa "int C"
			

			Non-zero if the output should be uppercase.
			

			.It Fa "const char *prefix"
			

			A prefix to precede the output or NULL for no prefix.
			

			.El
		

		
			Here, we see the familiar Bl and El list enclosure.  Notice how I re-use the Fa macro to document individual arguments, just like I re-used Fl and Ar when documenting command-line
			flags and arguments.  In the last section, I mentioned why we use Fn
			instead of Nm for re-stating the name.
		

		
			This renders as follows.
		

		
			
				DESCRIPTION

				The hello() function prints “hello, world”.

				It accepts the following arguments:
				
						
						int C

						
						Non-zero if the output should be uppercase.

						
						const char *prefix

						
						A prefix to precede the output or NULL for no prefix.

				

			

		

		
			Finally, let's add a section documenting the return value of this function.  This will differ from the simple example in
			that we actually return a value.  
		

		
			.Sh RETURN VALUES
			

			The
			

			.Fn hello
			

			function returns 1 on success, 0 on failure.
		

		
			Piecing this example together, we have the following the following respectable C function manual.
		

		
			.Dd May 30, 2011
			

			.Dt HELLO 3
			

			.Os
			

			.Sh NAME
			

			.Nm hello
			

			.Nd print \(dqhello, world\(dq
			

			.Sh SYNOPSIS
			

			.In hello.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "int C" "const char *prefix"
			

			.Fc
			

			.Sh DESCRIPTION
			

			The
			

			.Fn hello
			

			function prints
			

			.Qq hello, world .
			

			.Pp
			

			It accepts the following arguments:
			

			.Bl -tag -width Ds
			

			.It Fa "int C"
			

			Non-zero if the output should be uppercase.
			

			.It Fa "const char *prefix"
			

			A prefix to precede the output or NULL for no prefix.
			

			.El
			

			.Sh RETURN VALUES
			

			The
			

			.Nm
			

			function returns 1 on success, 0 on failure.
		

		
			Running through our checklist, we see that we've described preprocessor information with the header file macro In; function calling syntax and types in the SYNOPSIS; and arguments in the DESCRIPTION along with function
			operation.  This contains all we need to know about the function.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2014/04/07 21:27:38 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Case Study
		

		
			I now introduce a case study of a real-world function manual, in particular the manual for the strtonum function, which is an extension to the C
				Standard Library found in OpenBSD.  The original file may
			be viewed on-line at src/lib/libc/stdlib/strtonum.3,
			file version 1.14.
		

		
			In this case study, I've chosen a manual with some bad behaviour  not broken, but bad.  This is intentional to
			show how real-world manuals deviate from recommended forms.  I'll explicitly note each instance of bad behaviour as we
			explore the manual's contents.
		

		
			.\"$​OpenBSD: strtonum.3,v 1.14 2007/05/31 19:19:31 jmc Exp $
			

			.\"
			

			.\" Copyright (c) 2004 Ted Unangst
			

			.\"
			

			.\" Permission to use, copy, modify, and distribute this software for any
			

			.\" purpose with or without fee is hereby granted, provided that the above
			

			.\" copyright notice and this permission notice appear in all copies.
			

			.\"
			

			.\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
			

			.\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
			

			.\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
			

			.\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
			

			.\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
			

			.\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
			

			.\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
		

		
			This is the standard comment header to manual files in OpenBSD.  Indeed, most distributed manuals begin with a copyright
			notice, then a license.  The $​OpenBSD$ line is automatically updated by the revision
			control system, cvs, whenever an update to the file is committed.  The
			line following is the copyright message, and following that is the text form of the ISC license.
		

		
			.Dd $​Mdocdate: May 31 2007 $
			

			.Dt STRTONUM 3
			

			.Os
		

		
			These three standard macros establish the last modified date, manual title (same as the single documented function but
			capitalised), manual category 3 (functions), and the default operating system.  The $​Mdocdate$ line, like the $​OpenBSD$ line, is
			automatically updated by cvs whenever the document is committed to the
			source repository.
		

		
			.Sh NAME
			

			.Nm strtonum
			

			.Nd "reliably convert string value to an integer"
		

		
			Declares a single documented function, strtonum, and its purpose.  The quotations within the
			Nd macro are superfluous: like Qq macro studied earlier, Nd accepts an
			arbitrary number of arguments to format.  Quotation, in grouping these as one argument, serves little but to pass in
			whitespace (there is no special whitespace to pass in).
		

		
			.Sh SYNOPSIS
			

			.Fd #include <stdlib.h>
			

			.Ft long long
			

			.Fo strtonum
			

			.Fa "const char *nptr"
			

			.Fa "long long minval"
			

			.Fa "long long maxval"
			

			.Fa "const char **errstr"
			

			.Fc
		

		
			This declares the function prototype and calling syntax.  First, let's examine the new Fd macro.  The use of this macro for a header inclusion is obsolete: new manuals should always
			use In.  This makes it easier for parsers to understand a header file
			 and possibly link to it  instead of being a generic preprocessor statement.  The re-written form would
			begin as follows:
		

		
			.Sh SYNOPSIS
			

			.In stdlib.h
		

		
			Moving along, we see that each function argument includes its name (e.g., nptr and minval).  While not common in header file prototypes, this allows later references of
			function invocation in the manual to refer back to the prototype for type and context information.  In the previous
			section, we discussed the relevance of quotation with Fa: the same is
			done here.
		

		
			While we could have used Fn, it would have created an overly long input
			line.  Using Fn instead of Fo is purely a matter of convenience and has no effect on parsing or formatting.
		

		
			.Sh DESCRIPTION
			

			The
			

			.Fn strtonum
			

			function converts the string in
			

			.Fa nptr
			

			to a
			

			.Li long long
			

			value.
		

		
			In the SYNOPSIS, the Fa included the full type
			information.  Here, however,
			we use Fa with just its name, nptr.  We could have done the same in the SYNOPSIS, but the C
			language includes all type information in its prototypes.
		

		
			The Li macro here isn't good practise: since the long long refers to a type, it should be of type Vt.  This behaviour  using a presentation macro instead of a semantic one  is a
			holder from legacy manual forms that are purely presentational.  If you find yourself applying a style, think twice
			whether it's a good idea!
		

		
			The
			

			.Fn strtonum
			

			function was designed to facilitate safe, robust programming
			

			and overcome the shortcomings of the
			

			.Xr atoi 3
			

			and
			

			.Xr strtol 3
			

			family of interfaces.
			

			.Pp
			

			The string may begin with an arbitrary amount of whitespace
			

			(as determined by
			

			.Xr isspace 3 )
			

			followed by a single optional
			

			.Ql +
			

			or
			

			.Ql -
			

			sign.
			

			.Pp
			

			The remainder of the string is converted to a
			

			.Li long long
			

			value according to base 10.
			

			.Pp
			

			The value obtained is then checked against the provided
			

			.Fa minval
			

			and
			

			.Fa maxval
			

			bounds.
			

			If
			

			.Fa errstr
			

			is non-null,
			

			.Fn strtonum
			

			stores an error string in
			

			.Fa *errstr
			

			indicating the failure.
		

		
			The remainder of the DESCRIPTION section has completely captured the calling syntax and
			behaviour of the function.  The usage of Ql macro is simply to set
			aside non-alphanumeric letters from the regular stream of text.
		

		
			.Sh RETURN VALUES
			

			The
			

			.Fn strtonum
			

			function returns the result of the conversion,
			

			unless the value would exceed the provided bounds or is invalid.
			

			On error, 0 is returned,
			

			.Va errno
			

			is set, and
			

			.Fa errstr
			

			will point to an error message.
			

			.Fa *errstr
			

			will be set to
			

			.Dv NULL
			

			on success;
			

			this fact can be used to differentiate
			

			a successful return of 0 from an error.
		

		
			Since this function returns a rather tricky error message, it's necessary to describe the effects of both the return
			value and the passed-in arguments.
		

		
			.Sh EXAMPLES
			

			Using
			

			.Fn strtonum
			

			correctly is meant to be simpler than the alternative functions.
			

			.Bd -literal -offset indent
			

			int iterations;
			

			const char *errstr;
			

			

			iterations = strtonum(optarg, 1, 64, &errstr);
			

			if (errstr)
			

			errx(1, "number of iterations is %s: %s", errstr, optarg);
			

			.Ed
			

			.Pp
			

			The above example will guarantee that the value of iterations is between
			

			1 and 64 (inclusive).
		

		
			Many manual readers jump directly to the EXAMPLES section to gain an understanding of your
			function.  Thus, not only must the example compile and run, it must also demonstrate as many parts of the function as
			possible.  In the case of strtonum, an error condition and a non-error condition are
			documented.  However, the header file inclusion(s) are missing, which may mislead readers.  In particular, the
			non-standard errx function requires the err.h header file.
		

		
			.Sh ERRORS
			

			.Bl -tag -width Er
			

			.It Bq Er ERANGE
			

			The given string was out of range.
			

			.It Bq Er EINVAL
			

			The given string did not consist solely of digit characters.
			

			.It Bq Er EINVAL
			

			.Ar minval
			

			was larger than
			

			.Ar maxval .
			

			.El
			

			.Pp
			

			If an error occurs,
			

			.Fa errstr
			

			will be set to one of the following strings:
			

			.Pp
			

			.Bl -tag -width "too largeXX" -compact
			

			.It too large
			

			The result was larger than the provided maximum value.
			

			.It too small
			

			The result was smaller than the provided minimum value.
			

			.It invalid
			

			The string did not consist solely of digit characters.
			

			.El
		

		
			The ERRORS section will be rigorously covered in the section on System Calls.  In brief, since the errno global error
			variable is set, each possible value must be documented in a list using the Er macro.  These are always enclosed within Bq.
		

		
			Furthermore, the error string in errstr must also be documented.
		

		
			.Sh SEE ALSO
			

			.Xr atof 3 ,
			

			.Xr atoi 3 ,
			

			.Xr atol 3 ,
			

			.Xr atoll 3 ,
			

			.Xr sscanf 3 ,
			

			.Xr strtod 3 ,
			

			.Xr strtol 3 ,
			

			.Xr strtoul 3
		

		
			This section collects all references to other manuals made elsewhere in this manual, then adds more for completion.
			Note that the entries are alphabetically sorted.
		

		
			.Sh STANDARDS
			

			.Fn strtonum
			

			is an
			

			.Ox
			

			extension.
			

			The existing alternatives, such as
			

			.Xr atoi 3
			

			and
			

			.Xr strtol 3 ,
			

			are either impossible or difficult to use safely.
			

			.Sh HISTORY
			

			The
			

			.Fn strtonum
			

			function first appeared in
			

			.Ox 3.6 .
		

		
			Since this function is included in OpenBSD's C Standard Library, the fact that the
			function is not standard must absolutely be documented.  In this, the Ox
			macro indicates the OpenBSD operating system (each BSD UNIX operating
			system has its own macro).
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/05 16:50:11 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Function Library
		

		
			I've mentioned several times that the name provided to Nm doesn't
			necessarily refer to the title of the manual in Dt.  Let's study a
			simple function library, using both hi and hello, which demonstrates
			this concept.
		

		
			A function library is a collection of object files, which consist mainly of programming functions, within a single file
			called a library.  On most UNIX systems, you can find libraries installed
			in /usr/local, ending in .a or .so.
		

		
			This example applies to any number of functions belonging to the same library  not necessarily all functions in
			the library.  In fact, one commonly finds large libraries spread over many manuals, each of which contain several
			similar functions.
		

		
			For simplicity's sake, I'll call this C function library libgreeting, implying that the
			installed library is called libgreeting.a or libgreeting.so.  It
			will consist of two header files, hi.h and hello.h, containing
			the function prototypes for hi and hello, respectively.
		

		
			Let's begin with the first few macros, which are also called the manual prologue.
		

		
			.Dd May 30, 2011
			

			.Dt GREETING 3
			

			.Os
		

		
			Note that I've changed the document title to be GREETING instead of choosing between
			function names.  This is because the manual documents the entire function library, not just one particular function.  In
			general, a function library should have its name not include the leading lib.
		

		
			It's a good rule of thumb that the Dt title of your document matches
			its filename.
		

		
			Next, I'll list the names of the functions being documented.  I also change the description of the manual to be more
			generic, just in case I want to add new functions, later.
		

		
			.Sh NAME
			

			.Nm hello ,
			

			.Nm hi
			

			.Nd print greeting messages
		

		
			Here I've used Nm twice to indicate that the manual documents two
			functions.  In doing so, I'll have to be careful when invoking Nm in
			later parts of the manual, as it will produce hi if I don't specify a name, and this is
			probably not desired (nor should it be depended upon, as I may re-order the names).
		

		
			If we were only documenting a single function in a library, we would only assign Nm and Nd to the relevant function and not
			that of the library.
		

		
			It's good practise to alphabetise the function names in the NAME section.  We must also be sure
			to comma-separate each name, leaving the last invocation without a comma.  Let's look at the output so far.
		

		
			
				NAME

				hello, 
				hi — print greeting messages
			

		

		
			Even though that is hard to maintain and not very useful, some operating systems, for example FreeBSD and NetBSD,
			require a LIBRARY section for base system libraries.  For portable libraries,
			do not include such a section.
		

		
			.Sh LIBRARY
			

			.Lb libgreeting
		

		
			This uses the macro Lb, which accepts the name of the library
			starting with lib.  This macro is not portable because the list of known library names is system
			dependent, so it will produce different output on different systems, which is not desirable for a manual page.
		

		
			
				NAME

				hello, 
				hi — print greeting messages
			

			
				LIBRARY

				library “libgreeting”
			

		

		
			The SYNOPSIS section will simply be a collection of the calling syntaxes for both functions,
			which we've already studied.  If we were only documenting one function, would list only that function here.
		

		
			.Sh SYNOPSIS
			

			.In hello.h
			

			.In hi.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "int C" "const char *prefix"
			

			.Fc
			

			.Ft void
			

			.Fn hi
		

		
			Note that I've listed both include files prior to the function prototypes.  This is familiar to C programmers, where
			functions may have multiple include files that need a specific order.  The functions are listed in the same order as
			their Nm listing. 
		

		
			Let's examine the output so far.
		

		
			
				NAME

				hello, 
				hi — print greeting messages
			

			
				LIBRARY

				library “libgreeting”
			

			
				SYNOPSIS

				#include <hello.h>

				#include <hi.h>

				int

				hello(int C, const char *prefix);

				void

				hi();
			

		

		
			Already, a manual reader has lots of pertinent information: the name of the library, its header file, and the function
			calling syntax.  Let's continue in documenting the functions and their arguments, but this time, we'll do so in a
			different style than before.
		

		
			Instead of using lists, we describe each function as a free-form stream of text.  We depend on the SYNOPSIS to hint the reader as to the function argument types; there's no need to re-state
			them.
		

		
			.Sh DESCRIPTION
			

			The
			

			.Fn hi
			

			and
			

			.Fn hello
			

			functions print out greeting messages.
			

			.Pp
			

			The
			

			.Fn hi
			

			function accepts no arguments and prints out
			

			.Qq hello, world .
			

			.Pp
			

			The
			

			.Fn hello
			

			function accepts a value
			

			.Fa C ,
			

			which if non-zero indicates output should be uppercase; and
			

			.Fa prefix ,
			

			which, if non-NULL, shall be prefixed to the output.
			

			The
			

			.Fa prefix
			

			argument, if non-NULL, must be nil-terminated.
		

		
			Notice how each sentence in this fragment ends on its own line, for example,
		

		
			which, if non-NULL, shall be prefixed to the output.
			

			The
			

			.Fa prefix
		

		
			By doing so, the formatter is able to recognise the end of sentence and correctly handle sentential spacing.  In most
			cases, this means adding two spaces between the period and subsequent text.  From this follows a rule of thumb, new
				sentence, new line.
		

		
			In this DESCRIPTION we've captured what each function does and what its arguments are.  What
			remains are return values.
		

		
			.Sh RETURN VALUES
			

			The
			

			.Fn hi
			

			function does not return a value.
			

			.Pp
			

			The
			

			.Fn hello
			

			function returns 1 on success, 0 on failure.
		

		
			Let's collect these fragments into a single document and see if it's enough to use as a programming reference.
		

		
			
				NAME

				hello, 
				hi — print greeting messages
			

			
				LIBRARY

				library “libgreeting”
			

			
				SYNOPSIS

				#include <hello.h>
				

				#include <hi.h>
				

				int
				

				hello(int C, const char *prefix);
				

				void
				

				hi();
			

			
				DESCRIPTION

				The hi() and hello() functions print out greeting messages.
				

				The hi() function accepts no arguments and prints out “hello, world”.
				

				The hello() function accepts a value C, which if non-zero indicates
				output should be uppercase; and prefix, which, if non-NULL, shall be prefixed to the output.
				The prefix argument, if non-NULL, must be nil-terminated.
			

			
				RETURN VALUES

				The hi() function does not return a value.
				

				The hello() function returns 1 on success, 0 on failure.
			

		

		
			We'll use our mental checklist as a guide.  First we stipulated linking information with the Lb macro.  Then we introduced the calling syntax of each
			function, naming their arguments.  We also stipulated the necessary header files in the order they'd be included in
			source files.  In the DESCRIPTION, we described each function and its arguments in full.
			Lastly, we documented return values in the RETURN VALUES section.
		

		
			From this information, a programmer should be able to interface with our library.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: schwarze $ on $Date: 2016/03/22 14:28:44 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Case Study
		

		
			I now introduce a case study of a real-world function library manual, in particular the manual for the getc, fgetc, getw, and getchar functions from OpenBSD.  The
			original file may be viewed on-line at src/lib/libc/stdio/getc.3,
			file version 1.12.  This is not the manual for the full function library, but only a handful of similar functions.
		

		
			.\"$​OpenBSD: getc.3,v 1.12 2007/05/31 19:19:31 jmc Exp ​$
			

			.\"
			

			.\" Copyright (c) 1990, 1991, 1993
			

			.\"	The Regents of the University of California.  All rights reserved.
			

			.\"
			

			.\" This code is derived from software contributed to Berkeley by
			

			.\" Chris Torek and the American National Standards Committee X3,
			

			.\" on Information Processing Systems.
			

			.\"
			

			.\" Redistribution and use in source and binary forms, with or without
			

			.\" modification, are permitted provided that the following conditions
			

			.\" are met:
			

			.\" 1. Redistributions of source code must retain the above copyright
			

			.\"    notice, this list of conditions and the following disclaimer.
			

			.\" 2. Redistributions in binary form must reproduce the above copyright
			

			.\"    notice, this list of conditions and the following disclaimer in the
			

			.\"    documentation and/or other materials provided with the distribution.
			

			.\" 3. Neither the name of the University nor the names of its contributors
			

			.\"    may be used to endorse or promote products derived from this software
			

			.\"    without specific prior written permission.
			

			.\"
			

			.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
			

			.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
			

			.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
			

			.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
			

			.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
			

			.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
			

			.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
			

			.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
			

			.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
			

			.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
			

			.\" SUCH DAMAGE.
		

		
			This is the standard comment header to manual files in OpenBSD.  The $​OpenBSD$ line
			is automatically updated by the revision control system, cvs, whenever an
			update to the file is committed.  The line following is the copyright message, and following that is the text form of
			the BSD license.
		

		
			.Dd $​Mdocdate: May 31 2007 ​$
			

			.Dt GETC 3
			

			.Os
		

		
			This classifies our manual in category 3 as a function or function library.  The title of the
			manual, GETC, is chosen as the most general of those functions listed below in the NAME section.
		

		
			.Sh NAME
			

			.Nm fgetc ,
			

			.Nm getc ,
			

			.Nm getchar ,
			

			.Nm getw
			

			.Nd get next character or word from input stream
		

		
			Lists (alphabetically) all the functions that will be documented, and some general notes about their collective
			function.  We next jump down into the SYNOPSIS; since this set of functions is part of the C Standard Library, it needs no special linking information.
		

		
			.Sh SYNOPSIS
			

			.Fd #include <stdio.h>
			

			.Ft int
			

			.Fn fgetc "FILE *stream"
			

			.Ft int
			

			.Fn getc "FILE *stream"
			

			.Ft int
			

			.Fn getchar "void"
			

			.Ft int
			

			.Fn getw "FILE *stream"
		

		
			This documents the calling syntax of all functions.  Note that the Fd
			macro is used instead of the In macro.  This invocation is
			historically relevant, but new manuals should always use In.
		

		
			.In stdio.h
		

		
			Next, each function and its arguments is explained as a free-flowing paragraph.  This was probably chosen instead of
			using a list item for each argument (with Bl) due to the small number
			of arguments.
		

		
			.Sh DESCRIPTION
			

			The
			

			.Fn fgetc
			

			function obtains the next input character (if present) from the stream
			

			pointed at by
			

			.Fa stream ,
			

			or the next character pushed back on the stream via
			

			.Xr ungetc 3 .
			

			.Pp
			

			The
			

			.Fn getc
			

			function acts essentially identically to
			

			.Fn fgetc ,
			

			but is a macro that expands in-line.
			

			.Pp
			

			The
			

			.Fn getchar
			

			function is equivalent to
			

			.Fn getc
			

			with the argument
			

			.Em stdin .
			

			.Pp
			

			The
			

			.Fn getw
			

			function obtains the next
			

			.Li int
			

			(if present)
			

			from the stream pointed at by
			

			.Fa stream .
		

		
			The usage of the Em macro is not correct: the Va or Dv macro
			would have been more appropriate.  The same applies to the Li.  The
			mdoc language is semantic, so using presentation macros such as Li and Em is
			discouraged.
		

		
			.Sh RETURN VALUES
			

			If successful, these routines return the next requested object from the
			

			.Fa stream .
			

			If the stream is at end-of-file or a read error occurs, the routines return
			

			.Dv EOF .
			

			The routines
			

			.Xr feof 3
			and
			

			.Xr ferror 3
			

			must be used to distinguish between end-of-file and error.
			

			If an error occurs, the global variable
			

			.Va errno
			

			is set to indicate the error.
			

			The end-of-file condition is remembered, even on a terminal, and all
			

			subsequent attempts to read will return
			

			.Dv EOF
			

			until the condition is cleared with
			

			.Xr clearerr 3 .
			

			.Sh SEE ALSO
			

			.Xr ferror 3 ,
			

			.Xr fopen 3 ,
			

			.Xr fread 3 ,
			

			.Xr putc 3 ,
			

			.Xr ungetc 3
		

		
			All possible return values are correctly documented in the RETURN VALUES section and relevant
			functions cross-linked in the SEE ALSO section.  Note that the cross-linked manuals are also
			alphabetically sorted.
		

		
			.Sh STANDARDS
			

			The
			

			.Fn fgetc ,
			

			.Fn getc ,
			

			and
			

			.Fn getchar
			

			functions conform to
			

			.St -ansiC .
		

		
			Noting standards conformance is extremely important: it allows programmers and administrators to depend on your
			component in a cross-platform fashion.  These functions are part of the C
				Standard Library.
		

		
			.Sh BUGS
			

			Since
			

			.Dv EOF
			

			is a valid integer value,
			

			.Xr feof 3
			

			and
			

			.Xr ferror 3
			

			must be used to check for failure after calling
			

			.Fn getw .
			

			.Pp
			

			Since the size and byte order of an
			

			.Vt int
			

			may vary from one machine to another,
			

			.Fn getw
			

			is not recommended for portable applications.
		

		
			The BUGS section should be used very carefully  bugs preferably should be fixed.  In
			this section, design bugs have been documented.  Whether the CAVEATS section would be more
			appropriate is up to the manual author.
		

		
			We found several inconsistent uses of mdoc in this manual.  In general, if you find unusual or
			erroneous macros or styles in UNIX manuals, notify the authors!  A bug in a manual is just as important as a bug in the
			code.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			System Call
		

		
			A system call differs from a user-land function in that it triggers the operating system kernel to perform some
			operation.  This usually applies to I/O, such as reading from files or sockets with write.
			Other than that, system calls are no different than regular functions  they're invoked, have return values, and
			so on.
		

		
			In mdoc, however, a system call is a special function consisting of at least one section not
			found in ordinary function manuals.
		

		
			The first difference between ordinary functions and system calls is the manual category.  Let's study a function khello, kernel hello, which is similar to the hello
			function described earlier.
		

		
			.Dd May 30, 2011
			

			.Dt KHELLO 2
			

			.Os
		

		
			All system calls are in category 2.  Furthermore, unless under special circumstances, system call
			are each accorded their own manual.
		

		
			I'll use the same descriptive text as in the hello example.  Note that for system calls, the
			hello.h header file should be in the compiler's standard include path.  This is usually
			/usr/include on UNIX systems.
		

		
			.Sh NAME
			

			.Nm hello
			

			.Nd print greeting messages
			

			.Sh SYNOPSIS
			

			.In hello.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "int C" "const char *prefix"
			

			.Fc
			

			.Sh DESCRIPTION
			

			The
			

			.Nm
			

			function prints out a greeting message.
			

			.Pp
			

			It accepts a value
			

			.Fa C ,
			

			which if non-zero indicates output should be uppercase; and
			

			.Fa prefix ,
			

			which, if not
			

			.Dv NULL ,
			

			shall be prefixed to the output.
			

			The
			

			.Fa prefix
			

			argument, if not
			

			.Dv NULL ,
			

			must be nil-terminated.
		

		
			You'll notice I've omitted the LIBRARY section in this example, as system calls by definition
			aren't a part of a library.  Furthermore, I've used the Dv macro to
			annotate the term NULL as a constant variable.
		

		
			Let's examine the output so far.
		

		
			
				NAME

				hello — print greeting messages
			

			
				SYNOPSIS

				#include <hello.h>
				

				int
				

				hello(int C, const char *prefix);
			

			
				DESCRIPTION

				The hello function prints out a greeting message.
				

				It accepts a value C, which if non-zero indicates output should be uppercase; and prefix, which, if not NULL, shall be prefixed to the
				output. The prefix argument, if not NULL, must be
				nil-terminated.
			
 
		

		
			In the hello example, I included a section RETURN VALUES detailing
			the return value of the function.  System calls, however, usually return a standard value and have a side effect of
			setting the C library errno variable when invoked within a C language context.  This is
			documented with a special macro Rv.
		

		
			.Sh RETURN VALUES
			

			.Rv -std
		

		
			The std flag is by convention always specified.  This macro will produce standard text
			regarding the errno value and that the function returns -1 on
			failure and 0 on success.
		

		
			If you have multiple functions specified in your manual, you must list them individually as arguments to Rv.
		

		
			Next, the possible values of errno must be specified in the ERRORS
			section as a list.  Let's assume that EFAULT may be set if the pointer is invalid.
		

		
			.Sh ERRORS
			

			.Bl -tag -width Er
			

			.It Er EFAULT
			

			.Fa prefix
			

			points outside the allocated address space.
			

			.El
		

		
			The syntax of this list differs from lists we've already encountered.  Earlier we used the special term Ds as an argument to width to specify a generic width.
			Here, we used Er, which is also specified at the start of each list
			tag (lines beginning with It).
		

		
			The macro Er specifies a possible value of errno.  There are many standard variable names for errno values,
			such as EFAULT used in our example.  When we stipulate this as the argument of width, the formatter is able to translate this into a generic width of most Er macro contents.
		

		
			You should avoid using this construct unless it's in a conventional way, as it is here.
		

		
			If your system call is part of an operating system, it's common to add some lines as to when it was added.  Let's assume
			you're adding the function to a fictional Foo OS.  Most modern UNIX operating systems have their own macros, such as Bx for BSD UNIX.
			Be sure to note the version of the operating system.
		

		
			.Sh HISTORY
			

			The
			

			.Nm
			

			function call appeared in Foo OS version 1.0.
		

		
			Let's put all of these sections together and preview the output.
		

		
			
				NAME

				hello — print greeting messages
			

			
				SYNOPSIS

				#include <hello.h>
				

				int

				hello(int C, const char *prefix);
			

			
				DESCRIPTION

				The hello function prints out a greeting message.
				

				It accepts a value C, which if non-zero indicates output should be uppercase; and prefix, which, if not NULL, shall be prefixed to
				the output. The prefix argument, if not NULL, must be
				nil-terminated.
			
 
			
				RETURN VALUES

				The hello() function returns the value 0 if successful; otherwise the value -1 is
				returned and the global variable errno is set to indicate the error.
			

			
				ERRORS

				
						
						EFAULT

						
						prefix points outside the allocated address space.

				

			

			
				 HISTORY

				The hello function call appeared in Foo OS version 1.0.
			

		

		
			We can make sure the manual is complete by reviewing the checklist for function documentation.
		

		
			First we implied linking information by using category two (which does not need to be specially linked).  Then we
			introduced the calling syntax of the function, naming its arguments.  We also stipulated the necessary header files.  In
			the DESCRIPTION, we described the function and its arguments in full.  Lastly, we documented
			return values in the RETURN VALUES section and the errors set in ERRORS.
		

		
			We also added a HISTORY section, which isn't mentioned as part of our checklist but is
			considered good practise for system calls.  In general, a note on historical information is useful to put your component
			in the general context of related machinery.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2014/04/07 21:27:38 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Case Study
		

		
			I now introduce a case study of a real-world system call manual, in particular the manual for the fsync function from OpenBSD.  The
			original file may be viewed on-line at src/lib/libc/sys/fsync.2, file version
			1.9.
		

		
			.\"$​OpenBSD: fsync.2,v 1.9 2011/04/29 07:12:44 jmc Exp $
			

			.\"$​NetBSD: fsync.2,v 1.4 1995/02/27 12:32:38 cgd Exp $
			

			.\"
			

			.\" Copyright (c) 1983, 1993
			

			.\"	The Regents of the University of California.  All rights reserved.
			

			.\"
			

			.\" Redistribution and use in source and binary forms, with or without
			

			.\" modification, are permitted provided that the following conditions
			

			.\" are met:
			

			.\" 1. Redistributions of source code must retain the above copyright
			

			.\"    notice, this list of conditions and the following disclaimer.
			

			.\" 2. Redistributions in binary form must reproduce the above copyright
			

			.\"    notice, this list of conditions and the following disclaimer in the
			

			.\"    documentation and/or other materials provided with the distribution.
			

			.\" 3. Neither the name of the University nor the names of its contributors
			

			.\"    may be used to endorse or promote products derived from this software
			

			.\"    without specific prior written permission.
			

			.\"
			

			.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
			

			.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
			

			.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
			

			.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
			

			.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
			

			.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
			

			.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
			

			.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
			

			.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
			

			.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
			

			.\" SUCH DAMAGE.
			

			.\"
			

			.\"     @(#)fsync.2	8.1 (Berkeley) 6/4/93
		

		
			The cvs identifiers (both from the current system, OpenBSD, and the import source system, NetBSD), copyright, license, and sccs identifier (from the original system) are presented in the usual way: the the $​OpenBSD$ and $​NetBSD$ lines are automatically
			updated by the revision control system, cvs, whenever an update to the
			file is committed.  The line following is the copyright message, and following that is the text form of the BSD license.
		

		
			.Dd $​Mdocdate: April 29 2011 $
			

			.Dt FSYNC 2
			

			.Os
		

		
			The manual's last-modified date is maintained with the automatically-updated $​Mdocdate$ sequence.  Its title is set to the single function's capitalised form,
			category 2 for system calls under the current operating system.
		

		
			.Sh NAME
			

			.Nm fsync
			

			.Nd "synchronize a file's in-core state with that on disk"
		

		
			The Nd macro's arguments are superfluously quoted again.
		

		
			.Sh SYNOPSIS
			

			.Fd #include <unistd.h>
			

			.Ft int
			

			.Fn fsync "int fd"
		

		
			Again, in historical manuals, Fd is sometimes used instead of the
			modern In macro.  Note also the inclusion of the function argument's
			name, fd, where regular C prototypes would usually only include the type.
		

		
			.Sh DESCRIPTION
			

			.Fn fsync
			

			causes all modified data and attributes of
			

			.Fa fd
			

			to be moved to a permanent storage device.
			

			This normally results in all in-core modified copies
			

			of buffers for the associated file to be written to a disk.
			

			.Pp
			

			.Fn fsync
			

			should be used by programs that require a file to be in a known state,
			

			for example, in building a simple transaction facility.
		

		
			Since fsync is a simple function, its description is fairly straightforward.  The single
			function argument fd is fully described as well.
		

		
			

			.Sh RETURN VALUES
			

			A 0 value is returned on success.
			

			A \-1 value indicates an error.
		

		
			This is not correct, as it omits information on the errno global error being set.  The Rv macro should be used instead.
		

		
			.Sh ERRORS
			

			The
			

			.Fn fsync
			

			fails if:
			

			.Bl -tag -width Er
			

			.It Bq Er EBADF
			

			.Fa fd
			

			is not a valid descriptor.
			

			.It Bq Er EINVAL
			

			.Fa fd
			

			refers to a socket, not to a file.
			

			.It Bq Er EIO
			

			An I/O error occurred while reading from or writing to the file system.
			

			.El
		

		
			Most (if not all) system calls set the errno global error upon failure.  This, erroneously, was
			not mentioned in the RETURN VALUES section, but is documented here.
		

		
			.Sh SEE ALSO
			

			.Xr sync 2 ,
			

			.Xr sync 8
			

			.Sh HISTORY
			

			The
			

			.Fn fsync
			

			function call appeared in
			

			.Bx 4.2 .
		

		
			Note that the cross-references in SEE ALSO are ordered first by section, then alphabetically.
			The Bx is referenced as the origin of the system call.  The STANDARDS section is sorely missing, as fsync is a function
			specified by POSIX.1-2008 standard.
		

		
			We again found several inconsistent uses of mdoc in this case study.  Let this serve as a
			reminder that if you find bad or unusual mdoc in your manuals, notify the authors!  A bug in a
			manual is just as important as a bug in the code.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Manual Syntax and Structure
		

		
			In the last part, I introduced some mdoc language syntax by way of example.  We covered Commands and Functions.  In this part,
			I'll study the structure of the UNIX manual itself.
		

		
			Historically, the syntax and structure of mdoc derive from roff, a text processing language predating even UNIX.  mdoc was in fact a bundle of macros expanded by a
			formatter into roff  not a separate language.  Only recently has mdoc been mature enough to consider as a standalone language.
		

		
			The general syntax of roff (and thus mdoc) can be traced to the RUNOFF command from the mid-sixties!  The conventions of section
			names and manual categories were formalised later, in the early seventies, with the Version 1 AT&T UNIX Programmer's Manual.
		

		
			Although the focus of this book is obviously on mdoc, a great deal of its idiosyncrasies
			derive from roff, so we'll spend some time discussing seemingly-unnecessary complexity in the
			context of general text processing.
		

		
			I reiterate that this is not a canonical mdoc reference: mdoc
			is not a standard, and varies in subtle ways across formatters and operating systems.  In this part, I'll discuss only
			the portable parts of mdoc.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Syntax
		

		
			Before studying the structure of mdoc manuals, let's review the language we've seen so far.
			Foremost, we've noticed that mdoc documents consist only of printable ASCII characters.  We noted that a period at the beginning of a line indicates a
			mdoc macro:
		

		
			.Qq hello, world
		

		
			It's safe to say, in this case, that mdoc is line-oriented in that programme flow is in part
			governed by position on a line.  In the case of Qq, we saw how the
			macro extends to the end of the line.  This is also the first notion of scope, specifically scoping to the end of line.
			We then saw examples where scope covers multiple lines and accommodates for nested macros as well as text.
		

		
			.Sh DESCRIPTION
			

			The
			

			.Nm
			

			utility...
		

		
			We were briefly introduced to the concept of macros accepting flags and flag arguments.
		

		
			.Bl -tag -width Ds
			

			.It List key.
			

			List value.
			

			.El
		

		
			Finally, we noted that double-quotes have special semantic significance, which led to the topic of escaped terms such as
			\(dq for a double-quote character.  We also saw how punctuation is treated in special ways
			when lying at line boundaries.
		

		
			End of sentence, end of line.
			

			Same goes with
			

			.Em macros .
		

		
			In this chapter, we'll formalise these concepts.  I'll draw my terminology from the literature of formal languages and
			grammar, but it's not necessary to be familiar with the terms beforehand.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Input Encoding
		

		
			Without exception, a well-formed mdoc document consists only of ASCII printable characters, the space character, the newline character, and in
			some cases the tab character.  Most modern formatters allow for CR+LF newlines \r\n, but
			this is not portable.  Modern formatters also accomodate for unlimit to line length; this is not necessarily the case
			for legacy formatters.
		

		
			Unilaterally, the backslash \ is always interpreted as the beginning of an escape sequence.  If an escape precedes a newline, it escapes the
			current line:
		

		
			.Em This is considered one \
			

			line of input.
		

		
			Macro Line
		

		
			Formally speaking, a macro line is one beginning with a control character.  In mdoc, this is
			traditionally the . character, although historical documents may also use the ' character.  This notation extends back to the historical RUNOFF utility.
		

		
			
				Control Words:
			

			
				Input generally consists of English text, 360 or  fewer characters to a line.  Control words must begin a new
				line, and begin with a period so that they  may  be  distinguished from other text.  RUNOFF does not print the
				control  words.
			

		

		
			A line with only a control character followed by zero or more whitespace characters is stripped from input.
		

		
			A macro line may, in some circumstances, contain more macros.  The first macro  the one following the control
			character  may then be distinguished as the line macro.
		

		
			On macro lines the following non-alphanumeric characters are syntactically meaningful as follows.  These characters are
			collectively called reserved characters.
		

		
			
			
			
				
						!
						punctuation
				

				
						"
						control character (quotation)
				

				
						(
						punctuation
				

				
						)
						punctuation
				

				
						,
						punctuation
				

				
						-
						control character (macro argument)
				

				
						.
						punctuation
				

				
						:
						punctuation
				

				
						;
						punctuation
				

				
						?
						punctuation
				

				
						[
						punctuation
				

				
						\
						control character (escape sequence)
				

				
						]
						punctuation
				

				
						|
						punctuation
				

			
		

		
			To pass these characters along as literal text, you must either escape or quote them.
		

		
			If an unescaped space character is encountered on a macro line, it is used to delimit macros, macro arguments, and
			flags.  Multiple consecutive space characters have no effect on output.
		

		
			.Em Hello,World
			

			.Em Hello, World
		

		
			The spaces between Hello, and world delimit arguments in this
			case, and produce the same output of Hello, World without extra spaces.
		

		
			Text Line
		

		
			A text line is any line not beginning with a control character.  Text lines are never parsed for macros and may
			consist of printable ASCII character.  Text lines are concatenated together when forming output, so unless in certain
			circumstances, newlines are stripped from input.  Using a blank text line as a vertical separator is not portable.
		

		
			If a space character is encountered on a text line, it is reproduced verbatim in the output.
		

		
			Hello,World
			

			Hello, World
		

		
			The spaces between Hello, and world will be reproduced in both
			cases as-is.  However, it is considered non-portable to use spaces on a text-line to shape output: HTML, for example, by default collapses whitespace.  Secondly, consider whether
			controlled spacing between text in an otherwise free-form text sequence is appropriate.  In most space-retaining cases,
			such as in source code examples, you're better off with a literal display mode such as covered at the end of this
			section.
		

		
			Do not use the space-retaining feature to create double-spaces following a sentential period!  See Sentential Punctuation for how to do this properly.
		

		
			If the first letter of a text line is a space character, the output line shall be preceded by a newline.  This creates
			the effect of an implicit literal display.
		

		
			Hello, World.
			

			The newline, leading spaces, and in-linespacing are retained.
			

			This is free-form text.
		

		
			The portability of this behaviour is unknown.  For greater portability (and semantic annotation), a literal display mode
			should be opened instead with, for example, the Bd literal:
		

		
			Hello, World.
			

			.Bd -literal -compact
			

			The newline and leading spaces are retained.
			

			.Ed
			

			While this is not.
		

		
			In this example, the compact flag prevents leading vertical space.  To effect a vertical
			space following the literal display, use a Pp.
		

		
			Consider the following example:
			

			.Bd -literal
			

			int a_function(int *foo, int bar) {
			

			*foo += bar;
			

			}
			

			.Ed
			

			.Pp
			

			This is subsequent text.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/12/25 14:44:21 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Escape Sequences
		

		
			An escape sequence is any grouping of characters following a backslash \.  This may happen
			anywhere in input.  What follows the escape sequence syntactically depends upon the first letter.  The following
			sections describe common escape sequences.  The use of any other sequence is strongly discouraged for portable manuals;
			in fact, the use of any escape beyond \& should be strongly avoided: it makes manuals in
			different output formats inconsistent depending on their methods of glyph rendering.
		

		
			Special Characters
		

		
			Special characters allow the encoding of non-ASCII characters and, in macro lines, the use of reserved characters.  Special characters may be invoked anywhere in input.
		

		
			There are three forms of special character, distinguished by the number of letters in the sequence.
		

		
			
			
			
				
						\n
						one-letter
				

				
						\(nn
						two-letter
				

				
						\[N]
						n-letter
				

			
		

		
			The n-letter form may be used to express any of the others.  For example, \& (a
			zero-width space) is equivalent to \[&].  The most common escape sequence is in fact
			\&, a non-printing, zero-width space.  When preceding a word, it automatically causes it
			to be rendered as regular text:
		

		
			The following flags are also macros:
			

			.Fl \&Ar
		

		
			If the Ar were not preceded with an escape, it would have be interpreted as the Ar macro instead of the flags Ar.  An
			alternative to this is to quote the argument (see Quotation).  The zero-width
			escape is found more readily in literal contexts beginning with a period, such as
		

		
			.Bd -literal
			

			\&.Fl Ar
			

			.Ed
		

		
			Predefined Strings
		

		
			An alternative form of special character is the predefined string.  These are legacy roff constructs of an escape sequence that may be programmatically set or unset.
			The syntax for predefined strings follows:
		

		
			
			
			
				
						\*n
						one-letter
				

				
						\*(nn
						two-letter
				

				
						\*[N]
						n-letter
				

			
		

		
			The use of predefined strings is discouraged in portable manuals, as available strings may differ between
			implementations and formatters.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/12/25 14:52:52 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Comments
		

		
			Comments  words in an mdoc document not interpreted by the formatter  are
			indicated by the special character \".
		

		
			Regular text. \" In a comment.
			

			.Em A macro . \" Another comment.
		

		
			The comment extends from the special character to the end of the line.  If the newline is escaped, the comment only
			applies to the current line.  In other words, the newline escape is commented.
		

		
			Not in a comment, \" in a comment \
			

			Not in a comment.
		

		
			A comment may span an entire line if it's specified as a pseudo-macro, that is, following the control character ..
		

		
			.\" This is a full-line comment.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Macros
		

		
			So far we've considered several different types of macros.  A macro is usually a terse, two or three-character sequence
			specified on a macro line.  In this section I formalise the various types of
			macros, categorised by their scope rules.  As with many other languages, macros instructions are either scoped to one
			line (following a single instruction), which I call in-line; or to multiple lines (bracketed between instructions),
			which I call blocked.  Block macros are usually invoked on a line of their own, as with Bd, but may also be invoked within a line.
		

		
			Generally speaking, a macro is syntactically defined as having a macro name, and optionally flags and with optional flag
			arguments.  The arguments to a macro depend on its scope rules.
		

		
			Name 
			
				Flag 
				
					Arg
				
			
		

		
			The hyphen - indicates a macro flag only when the preceding macro accepts arguments.
		

		
			In-line Macro
		

		
			An in-line macro's arguments are scoped to the current line.  Its scope may also be closed out by subsequent macros: an
			in-line macro can never contain a nested macro.  For a complete reference, see In-Line macros in the mdoc reference.
		

		
			Name
			
				Flag 
				
					Flag Arg
				
			
			
				Arg...
			
		

		
			Not all in-line macros accept arguments, and some in-line macros accept a fixed number of arguments.
		

		
			For example, the regular way of structuring command-line arguments, as described initially in the Elaborate Function guide, is a command flag, followed by flag
			arguments, followed by regular arguments.  We can put most invocation forms on one line as follows.
		

		
			.Op
				Fl
					W
				Ns
				Ar
					level
			
		

		
			In this example, Ar, Fl, and Ns are in-line macros.  The Op is a block partial-implicit.  The Fl macro opens within the Op and is closed by the Ns, which accepts no
			arguments at all.  This suppresses the space between the flag and its arguments (this alternative style is used at
			times, but discouraged).  The arguments are opened by Ar and close at
			the end of the line.
		

		
			The following is an example of macros with a fixed number of arguments:
		

		
			.Xr
				mandoc
				1
			Ap
			s
		

		
			The Xr macro accepts the mandoc and
			1 arguments, then reverts to accepting text.  The Ap accepts no arguments, so it immediately reverts to the trailing text.
		

		
			Finally, an example of an in-line macro accepting flags follows:
		

		
			.St
				ansiC
		

		
			The argument to St specifies the standard to be printed.
		

		
			Block Partial Implicit
		

		
			A block partial macro is similar to an in-line macro in that its scope is restricted to the
			current line: it is implicitly closed by the end of line (as opposed to block
				partial explicit macros) and partial in that it only extends to the current line (as opposed to block full implicit macros).  Unlike an in-line macro, it accepts nested macros
			(hence block macro).  For a complete reference, see Block Partial Implicit
			macros in the mdoc reference.
		

		
			Name
			
				Flag 
				
					Flag Arg
				
			
			
				Arg|Macro...
			
		

		
			The scope of a partial block macro is always closed by the end of the line; any macros between it and the end of line
			are interpreted as nested macros.  We began this book with the block partial implicit macro Qq.  The nested qualities of this macro category may be seen by embedding Qq and Pq
		

		
			.Pq
				Qq
					Parenthesised quotation .
				
			
		

		
			Be warned.  If you open but do not close a block partial explicit macro before the
			end of the line, behaviour is not always well-defined as the scope is broken.
		

		
			Block Full Implicit
		

		
			A macro seen early on, the Sh macro, is block full implicit.  Unlike
			block partial implicit macros, these consist of multiple lines (they are
			blocks) and treat the line arguments and multi-line arguments differently (full).
			For a complete reference, see Block Full Implicit
			macros in the mdoc reference.
		

		
			.Begin
			
				Flag 
				
					Flag Arg
				
			
			
				Arg...
			
			

			
				Arg...
			
		

		
			The scope of Begin is closed out implicitly  by one of several possible macros or the
			end of file.  The notion of a full macro is obvious when considering Sh:
		

		
			
				.Sh 
					SECTION 1
				

				Sectional text.
			

			
				.Sh 
					SECTION 2
				

				Sectional text.
			

		

		
			In this, the macro must separately decorate its line arguments and multi-line arguments.  In this case, the line
			arguments must be bolded while the multi-line arguments must be indented.  The Sh macro is closed out by a subsequent Sh or the end of file.  Compare this to Ss, which closes out with a subsequent Sh, Ss, or end of file.
		

		
			Block Partial Explicit
		

		
			The simplest multi-line macro is the block partial explicit, which is opened and closed by two separate
			(explicit) macros.  It is partial because it does not differentiate between arguments on the current line
			or subsequent lines, as opposed to block full explicit macros.  The pair of macros
			involved in a full block macro are called the beginning and ending macros.
			For a complete reference, see Block Partial Explicit
			macros in the mdoc reference.
		

		
			.Begin
			
				Flag 
				
					Flag Arg
				
			
			
				Arg...
			
			

			
				Arg...
			
			

			.End
		

		
			One must be careful, in full block macros, not to break the scope of other block macros, or behaviour is undefined.
		

		
			We have not yet considered a block partial explicit macro pair in this book.  But we can do so by considering Oo and Oc.  This pair of
			macros, for option open and option close, extend the behaviour of Op
			to multiple lines.
		

		
			.Fl 
			W
			Oo
			

			warn|error|fatal
			

			.Oc
		

		
			Block Full Explicit
		

		
			The block full explicit macros are full in the sense that arguments on the macro line and arguments following are
			treated differently (like block full implicit macros).  The earliest example of this
			is the Bl.  These macros are explicitly closed by a closing
			macro and may contain nested macros.  For a complete reference, see Block Full Explicit macros
			in the mdoc reference.
		

		
			Consider the Bd macro, which does not accept line arguments (most
			block full explicit macros do not accept line arguments).  It is manually closed by Ed.
		

		
			
				.Bd 
					ragged
					offset
					indent
				
					Display text.
					

					More display text.
				

				.Ed 
			

		

		
			In this example, the text between the Bd and Ed are treated specially.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/12/25 15:03:57 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Punctuation
		

		
			The mdoc language, in descending from the type-setting language roff, has significant type-setting capabilities.  Punctuation is treated
			specially in all mdoc documents, both in terms of macro and text lines.
		

		
			The following characters are considered punctuation:
		

		
			
			
			
				
						!
						ending sentence
				

				
						"
						ending enclosure
				

				
						(
						opening enclosure
				

				
						)
						ending enclosure
				

				
						,
						ending
				

				
						.
						ending sentence
				

				
						:
						ending
				

				
						;
						ending
				

				
						?
						ending sentence
				

				
						[
						opening enclosure
				

				
						]
						ending enclosure
				

				
						|
						intervening
				

			
		

		
			These are treated specially by the formatter when used in macro lines and at the end of text lines.
		

		
			Sentential Punctuation
		

		
			
				End of Sentence, End of Line.
			

		

		
			The end of a sentence should always be at the end of a line.  This way, the formatter can recognise a sentence by the
			punctuation used and insert the correct amount of spaces.  If supported by the output media (HTML, for example, does not), all modern mdoc
			formatters use English spacing to mark sentence boundaries.
			The ending sentence punctuation in the punctuation table marks an end of sentence.
		

		
			In text lines, sentence punctuation should always occur at the end of the line.
		

		
			End of sentence.
			

			End of line.
			

			("Even with nested sentences.")
		

		
			Note, in the last sentence, that the formatter will recognise sentence punctuation even when followed by ending
				enclosure punctuation as noted in the punctuation table. 
		

		
			However, take care that non-sentence punctuation, such as for abbreviations, does not happen to fall at
			the line boundary.
		

		
			Paging Dr.
			

			Freud.
		

		
			In this case, the formatter will interpret Dr. as ending a sentence.  In this event, you can
			either restructure your line or add a zero-width escape following the period.
		

		
			Paging Dr.\&
			

			Freud.
		

		
			Macro lines are slightly more complicated.  The same rules apply, but
			punctuation marks must be separated by spaces.  The formatter will understand the role of the punctuation and remove the
			spaces accordingly, or reorder sentence and closing punctuation.
		

		
			Text (parenthesised
			

			.Em text ) .
			

			.Qq Properly period-closed quotation .
		

		
			The punctuation may be escaped by either a trailing escape, as in the text case, or a preceding escape.  In this case it
			is not considered punctuation, but regular text.  Note that this will also cause an intervening space to be printed.
		

		
			.Em End of sentence .
			

			.Em Not end of sentence \&.
			

			.Em Not end of sentence .\&
		

		
			Regular Punctuation
		

		
			Non-sentential text line punctuation  commas, parenthesis, quotes, etc. is a matter of literal printing.
		

		
			Some text (punctuation), another "clause".
		

		
			The rules for macro lines are the same but for in-line macros, which might
			decorate individual terms with text.  In this case, punctuation as a standalone argument is specially treated in that it
			is not decorated, and whitespace removed according to the punctuation type (opening, closing).
		

		
			.Em ( Nicely spaced and decorated . )
			

			.Em (All text decorated, no end-of-sentence.)
			

			.Em ( Text alright , excepting the period \&. )
		

		
			In the second example, (All and end-of-sentence.) are considered
			arguments, and thus not accommodated for in terms of punctuation.  In the third, the period is escaped and thus
			considered regular text.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/12/25 14:44:21 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Quotation
		

		
			Several times I've mentioned how to interpret macro arguments as text  instead of, say, other macros  by
			quotation.  In this section, I formalise the notion of quoting arguments.  The issue of quotation is fairly complex
			owing to mdoc's predecessor, roff.  
		

		
			In short, quoting arguments to macros passes the enclosed text verbatim as a single argument.  An obvious case follows:
		

		
			.Fl "Ar"
		

		
			By quoting Ar, it is passed verbatim to Fl
			If not, it would be interpreted as the macro Ar and open a new macro
			scope.  What's worse is that the syntax is entirely legal!  This illustrates a minor short-coming of mdoc: beginners may unwittingly invoke macros (such as Ar in our example).  Printing a warning would cause more harm than good with
			well-formed manuals; thus, it's the responsibility of the document author to double-check that macro instructions are
			properly treated. 
		

		
			This condition could have been avoided by beginning the argument Ar with a zero-width
			escape, such as \&Ar.  The need for quotation is more obvious with the Fn macro:
		

		
			.Fn 
			int 
			foo 
			int
			bar
		

		
			The syntax of Fn is that it first accepts an optional function type,
			then a function name, then arguments to the function.  These arguments usually include a type followed by a name.  In
			our example, int refers to the function type, foo to the name,
			and both int and bar as separate arguments.
		

		
			Our intention, however, was to have int bar considered a single argument.  To do so, we
			would need to quote.
		

		
			.Fn 
			int 
			foo 
			"int bar"
		

		
			The int bar argument is now passed intact to the macro.
		

		
			To include quotation marks in quoted text, use two quotation marks in a row.
		

		
			.Li """"
		

		
			This artificial invocation passes a quotation mark followed by four whitespaces to the Li macro.  It is, however, unwise to use this language component: it's jarring to those
			expecting symmetric quotes, and easy to mis-type, leaving runaway quotes.  It's safer to use an escape, such as \(dq, instead of pair-wise quotations.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/12/25 15:10:22 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Structure
		

		
			An mdoc manual is divided into two logical parts: the prologue and the document body.
		

		
			.\" Prologue follows:
			

			.Dd May 26 2011
			

			.Dt MDOC 7
			

			.Os
			

			.\" Document body follows:
			

			.Sh NAME
			

			.Nm mdoc
			

			.Nd mdoc language reference
			

			.Sh DESCRIPTION
			

			The
			

			.Nm mdoc
			

			language is used to format
			

			.Bx
			

			.Ux
			

			manuals.
		

		
			The prologue specifies information regarding the manual's classification.  For the most part, this information does not
			change over the course of development.  It specifies the manual's title (which may encompass multiple documented
			components) and category, the date of last editing, the other information.
		

		
			.Dd May 26 2011
			

			.Dt MDOC 7
			

			.Os
		

		
			The document body consists of the documentation content.  This material changes over the course of development, and is
			the bulk of the manual page.  It minimally consists of the component name, invocation syntax (if applicable), and a
			description of operation.
		

		
			.Sh NAME
			

			.Nm mdoc
			

			.Nd mdoc language reference
			

			.Sh DESCRIPTION
			

			The
			

			.Nm mdoc
			

			language is used to format
			

			.Bx
			

			.Ux
			

			manuals.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Prologue
		

		
			The prologue consists at most of the Dd, Dt, and Os
			macros.  These always occur at the beginning of a manual.
		

		
			.Dd May 26 2011
			

			.Dt MDOC 7
			

			.Os
		

		
			The only firm requirement of the mdoc prologue is that the Dd macro comes first: many formatting systems will read up to the first macro to determine the
			formatting language.  If Dd is not encountered first, the mdoc format may not be recognised.
		

		
			Following the Dd, the prologue is conventionally ordered as first Dt and then Os.
			The Os macro is usually left without arguments, meaning that the
			manual applies to the current system.
		

		
			After parsing the document prologue, the following is known:
		

		
				The date of last modification.

				The canonical title of the manual.

				The manual category (manual section).

				Whether the manual relates to a particular hardware architecture.

				The relevant operating system.

		

		
			Date
		

		
			The date is specified by the Dd macro.
		

		
			.Dd date
		

		
			While no particular date format is required, it's best to use the month day, year format,
			where month is the month in English; day is the day of month;
			and year is the four-digit year.  Arbitrary white-space may separate the tokens, which may
			also be quoted.
		

		
			Example of canonical form:
		

		
			.Dd June 03, 1991
		

		
			Example of not zero-padded digit form:
		

		
			.Dd June 3, 1991
		

		
			Example of quoted-string form:
		

		
			.Dd "June 3, 1991"
		

		
			All of the above examples will normalise to the third of June, 1991.  It's especially important that the month be in
			English, as not all operating systems support localisation.
		

		
			Some formatters also support a special date format as follows:
		

		
			.Dd $Mdocdate: January 1 2012 $
		

		
			This is usually used in conjunction with source-code control systems that automatically change the date.  Consult your
			formatter's manual for whether it supports this feature.
		

		
			Title
		

		
			A manual's title identifies the entire manual document.  It is always specified in uppercase as the first argument of
			the Dt macro, which conventionally follows the initial Dd macro.
		

		
			.Dt TITLE category architecture
		

		
			The title usually corresponds to the file-name of the document, but this is not necessarily the case.
		

		
			In the case of a single-component manual, such as the manual for a single UNIX command or programming function, the
			title corresponds to the manual name as specified with the SYNOPSIS Nm macro argument.
		

		
			In the event of multiple components, such as a programming library, the title usually corresponds to the library name.
			If multiple commands are specified, such as with aliased names, the canonical form should be used.
		

		
			Example of a title for the ls utility:
		

		
			.Dt LS 1
		

		
			Example of a title for the libgreeting function library, consisting of the hi and hello functions:
		

		
			.Dt GREETING 3
		

		
			If the title is left unspecified by omitting the Dt macro, behaviour
			is undefined.  Usually a formatter will default to an empty string or LOCAL.  In general,
			however, a manual without Dt may be considered incomplete.
		

		
			Category
		

		
			The category of a manual, sometimes called the manual section, specifies the type of component a manual describes.  It
			is specified in the second argument of the Dt macro.
		

		
			.Dt TITLE category architecture
		

		
			These categories are dictated by convention extending to the Version 1 AT&T UNIX Programmer's Manual.
		

		
			
				This manual is divided into seven sections:
			

			
					Commands

					System calls

					Subroutines

					Special files

					File formats

					User-maintained programs

					Miscellaneous

			

			
				Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines, which
				are intended to be called by the user's programs. Commands generally reside in directory bin (for binary programs). 
			

		

		
			These sections have been expanded and formalised in the intervening years, amounting to the following modern conventions.
		

		
				1: user utilities.

				
				Most commands fall under this category.  A user utility is usable by all operators of a UNIX system.  Common
				examples: ls, man,
				cat.
			

				2: system calls.

				
				These are a special class of programming function, usually in C, that do not need header file or linking
				information.  Common examples: open, close, write.
			

				3: user programming functions.

				
				Most functions fall under this category.  A user programming function is available as standalone or library
				function, although some, such as the C library, need not be explicitly linked.  Common examples: strcpy, isascii.
			

				4: device interfaces.

				
				This category is not as common as categories 13; in
				fact, not all systems use this section at all.  When used, it consists of manuals for hardware device drivers.
				These manuals are usually tied to a particular architecture.
			

				5: file formats.

				
				This category is not as common as categories 13.  When
				used, it consists of structure text file documentation.  Common example: passwd.
			

				6: games (and user utility miscellanea).

				
				This category is not as common as categories 13, many
				systems do not come pre-supplied with games.  When used, it refers to games or arcana utilities.
			

				7: miscellaneous.

				
				Introductory materials or general text.  This category is common, but its contents vary from system to system.
			

				8: administrative utilities.

				
				This consists of utilities for system administration, which may not be accessible or executable by general users
				(see category 1).  Common examples: dump, restore, fsck.
			

				9: kernel programming functions.

				 
				This category is found on few operating systems.  Where applicable, it consists of those functions used in
				operating system internal development (kernel development).
			

		

		
			There are several refinements to the numerical category convention.  Perl, Fortran, and Tcl libraries are often grouped
			under category 3p, 3f, and 3tcl,
			respectively.  Perl modules may also fall under 3pm.  Tcl libraries are also found in the n category.
		

		
			Although some common libraries are traditionally referred to with a custom suffix, such as 3ssl
			for the OpenSSL library, this notation is heavily discouraged.
		

		
			Manuals for the X Window System, traditionally bundled with UNIX systems, are categorised under X11.  Manuals for the popular X11R6 distribution of the X Window System may also be listed
			under X11R6.
		

		
			The paper category historically consisted of longer papers, the draft
			category consists of draft manuals, unass consists of uncategorised manuals, and local consists of local system documentation.  These categories are rarely used and should be
			avoided for portable, readable manuals.
		

		
			Architecture
		

		
			Some manuals, especially those in category 4 or 9, relate only to a
			particular hardware architecture.  This is a useful specifier in the machine-dependent manuals for category 9 manuals.
		

		
			These use the optional third argument of the Dt macro.
		

		
			.Dt TITLE category architecture
		

		
			For a list of possible architectures, consult your local documentation.  A safe example is i386, for 32-bit x86-based systems; or amd64 for 64-bit AMD
			systems.
		

		
			A device referring to a particular architecture uses this to explicitly note its relevant architecture.  In normal
			manuals, this should not be used.
		

		
			Operating System
		

		
			Similar to architecture, some manuals only pertain to a particular operating system.  This system may be specified to
			the Os macro of the prologue.
		

		
			.Os system
		

		
			If system is unspecified, the manual is assumed to apply to any operating system.
		

		
			This form is useful when multiple operating systems have access to local-network administrative manuals, such as in a
			networked file-system environment.  Otherwise, it is rarely used.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:32 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Document Body
		

		
			The document body begins with the first macro not in the prologue set (Dd, Dt, and Os).  The document body consists of the manual content itself, and varies significantly
			between categories and, of course, the material itself.
		

		
			.Sh NAME
			

			.Nm mdoc
			

			.Nd mdoc language reference
			

			.Sh DESCRIPTION
			

			The
			

			.Nm mdoc
			

			language is used to format
			

			.Bx
			

			.Ux
			

			manuals.
		

		
			The content of the document body is divided into sections.  Sections are indicated by the Sh macro.
		

		
			.Sh SECTION NAME
			

			Text within the section...
		

		
			As described in the introduction, a section consists of its line arguments and all subsequent lines until the end of
			file or another Sh macro.
		

		
			By convention, Sh arguments are capitalised.  I'll describe
			conventional sections at length in the next chapter, as for the most part follow long-standing document conventions.
		

		
			In general, the document body requires at least the NAME and DESCRIPTION sections, and usually the SYNOPSIS section as well.  The
			first section must be NAME, optionally followed by SYNOPSIS.  The
			DESCRIPTION section must follow either the NAME or SYNOPSIS.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Layout
		

		
			An mdoc document body is divided into sections.  The names and ordering of these sections is
			dictated by convention extending to the Version 1 AT&T UNIX Programmer's Manual.
		

		
			
					
					The name section repeats the entry name and gives a very short description of its purpose.
				

					
					The synopsis summarizes the use of the program being described. A few conventions are used, particularly
					in the Commands section.  Underlined words are considered literals, and are typed just as they appear.
					Square brackets ([]) around an argument indicate that the argument is optional. When an argument is
					given as name, it always refers to a file name.  Ellipses ... are used to show that the previous
					argument-prototype may be repeated.  A final convention is used by the commands themselves. An argument
					beginning with a minus sign - is often taken to mean some sort of flag argument even if it appears in a
					position where a file name could appear. Therefore, it is unwise to have files whose names begin with -.
					The description section discusses in detail the subject at hand.
				

					
					The files section gives the names of files which are built into the program.
				

					 
					A see also section gives pointers to related information.
				

					
					A diagnostics section discusses the diagnostics that may be produced. This section tends to be as
					terse as the diagnostics themselves.
				

					
					The bugs section gives known bugs and sometimes deficiencies. occasionally also the suggested fix
					is described.
				

					
					The owner section gives the name of the person or persons to be consulted in case of difficulty.
					The rule has been that the last one to modify something owns it, so the owner is not necessarily the
					author.
				

			

		

		
			These conventional sections haven't changed much over the years, although more sections have been added and several have
			changed with evolving UNIX operating system conventions.  The full set of modern sections, and their order, is as
			follows.
		

		
				NAME

				Name of all documented components and a collective description.

				SYNOPSIS

				Calling syntax of the components.

				DESCRIPTION

				Description of all components.  This constitutes the bulk of the manual.

				IMPLEMENTATION NOTES

				Specific notes on the implementation of a generic (e.g., standardised) component.

				RETURN VALUES

				Return values, if the components are functions.

				ENVIRONMENT

				Environmental variables affecting the components' operation.

				FILES

				Files affecting the components' operation.

				EXIT STATUS

				Exit status, if the components are commands.

				EXAMPLES

				Brief examples of invocation.

				DIAGNOSIS

				Error conditions, if a command or device driver.

				ERRORS

				Error conditions, if a function or library.

				SEE ALSO

				Links to other relevant manuals or references.

				STANDARDS

				Implemented or referenced standards.

				HISTORY

				A brief history of the components.

				AUTHORS

				The authors of the components.

				CAVEATS

				Caveats regarding the components' operation.

				BUGS

				Known bugs in the components.

				SECURITY CONSIDERATIONS

				Security precautions beyond the scope of the components.

		

		
			Only the NAME and DESCRIPTION sections are required in the document
			body, although a SYNOPSIS should appear for most manuals as well.
		

		
			Other sections may be necessary depending on the category.  For example, RETURN VALUES is found
			for most category 3 and 2 manuals; while EXIT
				STATUS is found for most category 1, 6, and 8 manuals.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Required Sections
		

		
			As discussed previously, a section is begun by the Sh macro and
			continues until the end of file or another section.
		

		
			.Sh SECTION NAME
			

			Text and macros within the section.
		

		
			What follows is a description of each required section: if your manual does not have the documented section, it should
			not be considered as well-formed.  Do note, however, that some types of manuals lack the SYNOPSIS section.
		

		
			NAME
		

		
			The NAME section immediately follows the document prologue and is thus usually the first macro
			of the document body.  It specifies the name of each documented component, and provides a brief description of the
			components as a whole.
		

		
			The following is an example of the NAME section for a single utility, hi.
		

		
			.Sh NAME
			

			.Nm foo
			

			.Nd print a simple greeting
		

		
			The Nd macro should consist of a single line without trailing
			punctuation or leading capitalisation.  As a rule of thumb, this description should be a sentence clause in the
			imperative mood for commands and functions, or simply a noun phrase for file formats, devices, and miscellanea.
		

		
			Example imperative:
		

		
			.Nm foo
			

			.Nd print a simple greeting
		

		
			Example noun phrase:
		

		
			.Nm mdoc
			

			.Nd mdoc language reference
		

		
			In the event of multiple named components, such as a function library or aliased commands, comma-separate each command
			but for the last.  It's common to alphabetically order this listing.
		

		
			.Nm hello ,
			

			.Nm hi
			

			.Nd print greetings
		

		
			Note that the punctuation should be separate from the macro argument.  This allows the formatter to distinguish between
			the name and trailing punctuation.
		

		
			SYNOPSIS
		

		
			The SYNOPSIS section, if specified, follows the NAME section.  It
			specifies the calling syntax of a component, thus, it is necessary for functions and commands.  The SYNOPSIS section has a layout dictated by convention, and depends upon the category.
		

		
			Commands
		

		
			For command manuals in category 1, 6, and 9,
			each command must have its full syntax stipulated.
		

		
			.Nm hello
			

			.Op Fl a
			

			.Op Fl o Ar output
			

			.Op Ar prefix
		

		
			This defines three optional arguments for the hi command: a flag, a flag with an argument, and
			an argument.  Flags should be purely alphabetical, without regard to whether a flag takes an argument.  Arguments should
			also be alphabetised.
		

		
			Note that if your manual only documents one component, it's unnecessary to re-write the command name for Nm.  If omitted, the last specified Nm in the NAME will be used.
		

		
			Multiple commands are specified in the order they appear within the NAME section.
		

		
			.Nm hello
			

			.Op Fl a
			

			.Op Fl o Ar output
			

			.Op Ar prefix
			

			.Nm hi
		

		
			Since there are multiple Nm macros in the NAME section, it's necessary that we specify the name of each command.  In this example, an
			additional command hi is specified, which has neither flags nor arguments.
		

		
			Functions
		

		
			Function libraries are more complicated, as they involve more diverse content.  A function library SYNOPSIS section consists of all documented material, including header files, functions,
			variables, macros, and so on.
		

		
			A minimum function manual consists of a single function call and the header file of its prototype (if in a language
			requiring header files, such as C):
		

		
			.In greeting.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "int C"
			

			.Fa "const char *output"
			

			.Fc
		

		
			The header file comes before those functions it describes.  If one or more header files are required, list them in the
			order of inclusion in source files.
		

		
			.In sys/types.h
			

			.In greeting.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "u_int C"
			

			.Fa "const char *output"
			

			.Fc
		

		
			If multiple functions are documented, list them in the order they appear in the NAME section.
		

		
			.In sys/types.h
			

			.In greeting.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "u_int C"
			

			.Fa "const char *output"
			

			.Fc
			

			.Ft void
			

			.Fn hi
		

		
			List any global variables with the Vt and/or Va macro following function prototypes.
		

		
			.In sys/types.h
			

			.In greeting.h
			

			.Ft int
			

			.Fo hello
			

			.Fa "u_int C"
			

			.Fa "const char *output"
			

			.Fc
			

			.Ft void
			

			.Fn hi
			

			.Vt extern const char * const * greetings;
		

		
			Macro definitions, however, should come before the function prototypes.  These use the Fd macro and must include the preprocessor directive for the macro.
		

		
			.In sys/types.h
			

			.In greeting.h
			

			.Fd #define GREETING
			

			.Ft int
			

			.Fo hello
			

			.Fa "u_int C"
			

			.Fa "const char *output"
			

			.Fc
			

			.Ft void
			

			.Fn hi
			

			.Vt extern const char * const * greetings;
		

		
			Some manuals define a range of functions with differing header dependencies.  In general it's not a good idea to group
			these within the same manual. However, if necessary, arrange the functions and variables underneath their header file
			In macros.  These need not necessarily much with the NAME section ordering, but should be as close as possible.
		

		
			DESCRIPTION
		

		
			This section documents the component itself, and is usually the longest.  For commands, each command is described in
			detail along with its arguments.  For functions, each function must be described along with its types and arguments.
		

		
			Commands
		

		
			A command or set of commands is documented in DESCRIPTION with a brief explanation of
			behaviour, default usage, then a list of arguments.  Some utilities state default usage following the argument list;
			however, manpages beginning with these statements are more readable and economical.
		

		
			The
			

			.Nm
			

			command prints a mixed-case greeting to standard output.
			

			.Pp
			

			The arguments are as follows:
			

			.Bl -tag -width Ds
			

			.It Fl C
			

			Whether to uppercase the output.
			

			.It Fl o Ar output
			

			A file into which output should be written.
			

			.It Ar prefix
			

			A string prefixed to the output.
			

			.El
		

		
			If multiple commands are included, they should be listed in the order they appear in NAME and
			DESCRIPTION.  Remember to specify a documented command, in this case, whenever invoking the Nm macro.  Command exit statuses are documented in EXIT STATUS.
		

		
			Functions
		

		
			Functions do not share the The arguments are as follows convention that commands enjoy.
			Most often, a function is described in paragraph form.
		

		
			The
			

			.Fn hello
			

			function prints a greeting to standard out.
			

			If
			

			.Fa C
			

			is non-zero, output is upper-cased.
			

			If
			

			.Fa prefix
			

			is non-NULL, it is prefixed to the output.
		

		
			A function with many variables, or complicated variables, may wish to choose the same listed-argument notation of
			commands.
		

		
			The
			

			.Fn hello
			

			function prints a greeting to standard out.
			

			The arguments are as follows:
			

			.Bl -tag -width Ds
			

			.It Fa "C"
			

			If non-zero, output is upper-cased.
			

			.It Fa "prefix"
			

			If non-NULL,
			

			.Fa prefix
			

			is prefixed to the output.
			

			.El
		

		
			Above all, you must be careful to document each argument to each function.  Function return values are usually
			documented in RETURN VALUES.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:32 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Optional Sections
		

		
			As discussed previously, a section is begun by the Sh macro and
			continues until the end of file or another section.
		

		
			.Sh SECTION NAME
			

			Text and macros within the section.
		

		
			What follows is a description of each optional section.  An optional section is not required for a well-formed manual,
			but may be necessary for a manual of a given type.  For example, the EXIT STATUS section is not
			required, but is necessary for utilities.
		

		
			IMPLEMENTATION NOTES
		

		
			For components describing an algorithm, or implementing a generic interface, it's at time useful to document the
			implementation itself.  As this is not relevant to the calling syntax or description of a component, this is relegated
			to the IMPLEMENTATION NOTES section.
		

		
			Consider a simple sorting function, mysort.
		

		
			.Sh SYNOPSIS
			

			.In mysort.h
			

			.Ft void
			

			.Fn mysort "int *input"
			

			.Sh DESCRIPTION
			

			The
			

			.Fn mysort
			

			function in-place sorts an integer array
			

			.Fa input .
			

			.Sh IMPLEMENTATION NOTES
			

			The
			

			.Fn mysort
			

			function uses a bubble-sort algorithm for sorting and thus operates in
			

			O(n^2) time with respect to input size.
			

			Since swapping is in-place, a constant number of allocations occur.
		

		
			In general, IMPLEMENTATION NOTES is not used, and is thus rarely found in UNIX manuals. 
		

		
			RETURN VALUES
		

		
			Manuals describing functions (categories 2, 3, and 9) must use the RETURN VALUES section to document each function's
			return value.  If a manual documents functions in a language without return values, or functions do not return a value,
			they need not use this section.
		

		
			System calls (category 2) usually employ the Rv macro to stipulate a standard return value statement.
		

		
			.Sh RETURN VALUES
			

			.Rv -std
		

		
			Note that the std flag is a required argument to Rv, for historical reasons.
		

		
			For non-system functions, be as brief as possible.
		

		
			.Sh RETURN VALUES
			

			The
			

			.Fn hello
			

			function returns zero on success and non-zero on failure.
		

		
			ENVIRONMENT
		

		
			Both commands and functions may be affected by UNIX environmental variables.  These must be documented in the ENVIRONMENT section of the manual.  Each variable should be listed as a Ev along with its effect on the component.
		

		
			.Sh ENVIRONMENT
			

			.Bl -tag -width Ds
			

			.It Ev TZ
			

			The time zone for when displaying dates.
			

			.El
		

		
			Some historical manuals use ENVIRONMENT VARIABLES instead of ENVIRONMENT.
		

		
			FILES
		

		
			Both commands and functions may also be affected by files, although this is mainly the purview of commands.  These files
			should be listed in the FILES section in a tagged list.
		

		
			.Sh FILES
			

			.Bl -tag -width Ds
			

			.It Pa ~/.profile
			

			User's login profile.
			

			.El
		

		
			EXIT STATUS
		

		
			This section is the dual of RETURN VALUES for commands in categories 1, 6, and 8.  It documents the exit status
			of commands.  
		

		
			If your utility exits with zero on success and greater than zero on failure (the standard for most utilities), use the
			Ex macro.
		

		
			.Sh EXIT STATUS
			

			.Ex -std
		

		
			More complex commands should document all possible exit status.
		

		
			EXAMPLES
		

		
			In many situations of casual use, the EXAMPLES section is the first visited in a manual.  It
			should consist of concise, documented examples of the most common uses of your component.  
		

		
			For commands, the EXAMPLES section should contain a handful of common use cases.  In general,
			these should consist of standalone invocations and, if the input and output correspond to other utilities, invocations
			as part of a pipeline.
		

		
			Although the hello example is almost too trivial for documentation, consider if it were used to
			greet new users to a Unix system.  Thus, a common example would be the following:
		

		
			.Sh EXAMPLES
			

			The following sends a greeting message to the new user
			

			.Qq joe .
			

			.Pp
			

			.Dl $ hello \(dqDear Joe, \(dq \(bv mail -s \(dqHi!\(dq joe
		

		
			The Dl, used for one-line literal displays, is a common macro in the
			EXAMPLES section.  For multi-line displays, use the Bd literal environment, usually with a default indentation with
			offset indent.
		

		
			.Sh EXAMPLES
			

			The following sends a greeting message to the new user
			

			.Qq joe .
			

			.Bd -literal -offset indent
			

			$ hello \(dqDear Joe, \(dq \(bv \e
			

			mail -s \(dqHi!\(dq joe
			

			.Ed
		

		
			For functions and function libraries, it's more common to include a single, thorough source example than individual
			examples for each function.  These always use the Bd literal display environment and an indentation.
		

		
			.Sh EXAMPLES
			

			The following is a simple utility interfacing with the
			

			.Nm
			

			library:
			

			.Bd -literal -offset indent
			

			#include <stdlib.h>
			

			#include "hello.h"
			

			
			

			int
			

			main(int argc, char *argv[]) {
			

			hello(0, argc > r ? argv[1] : NULL);
			

			return(EXIT_SUCCESS);
			

			}
			

			.Ed
		

		
			Use terse syntax for your example, without error checking for functions not being documented, e.g., open or scanf.
		

		
			Some manuals will use the vS and vE macros around source code.
			These are not mdoc and should be avoided in portable manuals.
		

		
			DIAGNOSTICS
		

		
			If your component emits regular debug, status, error, or warning messages, document the syntax of these messages in
			DIAGNOSTICS.
		

		
			Some historic manuals document function return values in this section, but modern practise is to do in RETURN VALUES or, if setting the error constant of the C library, ERRORS.
		

		
			The Bl diag lists are most often used
			for documenting emitted messages.
		

		
			.Sh DIAGNOSTICS
			

			.Bl -diag
			

			.It "%file:%line:%col: %msg[: %extra]"
			

			An error occured when processing
			

			.Cm %file
			

			at line and column
			

			.Cm %line
			

			and
			

			.Cm %col ,
			

			respectively.
			

			The error message
			

			.Cm %msg
			

			may be followed by additional debugging information in
			

			.Cm %extra .
			

			.El
		

		
			ERRORS
		

		
			This section is used exclusively by functions that set or return a regular error code.  The most common use is for
			system calls (category two) setting error constants in the C library.  In either case, this section should consist of a
			single list documenting all possible error codes.  In the latter case, each error should be labelled within the Er macro.
		

		
			SEE ALSO
		

		
			This section consists of cross-references to other manuals or literature.  It is a standard section in most UNIX
			manuals.  Any components referenced in your manual should be duplicated here along with any other bibliographic texts.
		

		
			For UNIX manual cross-references, use the Xr macro.  These should be
			specified in a list ordered first by section, then by name.  Non-terminal references should be comma-separated.
		

		
			.Sh SEE ALSO
			

			.Xr mandoc 1 ,
			

			.Xr mandoc 3 ,
			

			.Xr man 7 ,
			

			.Xr mdoc 7
		

		
			If your manual references other documents or literature, you may include them in this section within a bibliographic
			reference as well.  The Rs block is used for bibliographic references.
			These should be specified after any UNIX manual cross-references.
		

		
			.Sh SEE ALSO
			

			.Xr mandoc 1 ,
			

			.Xr mandoc 3 ,
			

			.Xr man 7 ,
			

			.Xr mdoc 7
			

			.Rs
			

			.%A Brian W. Kernighan
			

			.%A Lorinda L. Cherry
			

			.%T System for Typesetting Mathematics
			

			.%J Communications of the ACM
			

			.%V 18
			

			.%P 151\(en157
			

			.%D March, 1975
			

			.Re
		

		
			Bibliographic references should be ordered by document title.  Advanced references will be covered later in this book.
		

		
			STANDARDS
		

		
			If your component references any standards literature, it should be mentioned here.  Most standards (e.g., POSIX, ANSI,
			etc.) may be semantically noted with the St macro.  When implementing
			standardised wire protocols, references to RFC and other literature should also be mentioned here.  These differ from
			referenced standards in terms of being implemented versus referred.
		

		
			.Sh STANDARDS
			

			The
			

			.Nm
			

			utility is compliant with the
			

			.St -xpg4
			

			specification.
		

		
			If your component consists of deviations from a given standard, they should be mentioned in this section as well.  Some
			historic manuals use a special COMPATIBILITY section for this, but this is discouraged unless
			when discussing compatibility with non-standard but common utilities.
		

		
			This section has also been referred to as CONFORMING TO on some GNU/Linux manuals.
		

		
			HISTORY
		

		
			Some components have a historical basis: this should be included here.  Keep this information terse and, above all,
			correct.
		

		
			If your manual includes prior implementations of your component, for example, it's common to include the dates and
			developers of those prior implementations.
		

		
			AUTHORS
		

		
			Another standard section for UNIX manuals is the AUTHORS section, which should always mention
			the current contact for the utility.  The traditional text for this section is as follows.
		

		
			.Sh AUTHORS
			

			The
			

			.Nm
			

			reference was written by
			

			.An Joe Foo Aq joe@example.com .
		

		
			However, in as e-mail addresses are a ubiquitous form of contact, it's considered good practise to use the correct
			semantic notation.
		

		
			.Sh AUTHORS
			

			The
			

			.Nm
			

			reference was written by
			

			.An Joe Foo ,
			

			.Mt joe@example.com .
		

		
			The term reference in this fragment should reflect the content of the manual.
		

		
			CAVEATS
		

		
			The CAVEATS section is not often used.  It consists of text relevant to unexpected (but
			unchangeable) behaviour of the component.
		

		
			BUGS
		

		
			If the component has known bugs, they should be listed here.  In some historic manuals, authors used this section to
			list no bugs present; however, this text can be misleading for machine-readers of manuals and should be avoided
			in new manuals.
		

		
			SECURITY CONSIDERATIONS
		

		
			The SECURITY CONSIDERATIONS section is reserved for components whose deployment may be
			sensitive to security conditions, such as network daemons.  It should include suggestions on security measures beyond
			the scope of the component.
		

		
			This section was historically called SECURITY.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:33 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Tools
		

		
			By now we've discussed the mdoc language by way of example and a non-authoritative reference.
			I've even referenced some formatters, such as mandoc and nroff.  In this part, I'll focus on the environment of mdoc: formatters, project integration, and so on.
		

		
			After reading this part, you'll have a much better idea of how to read, write, and format mdoc
			on your operating system.  The bias of this part, however, will be toward UNIX systems.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Formatters
		

		
			The most important part of the mdoc tools is the formatter, which compiles an mdoc document into an output format.
		

		
			
				NAME

				cat — concatenate and print files

			
				SYNOPSIS

				
					
					
					
						
								
								cat
							
								
								[-benstuv] 
								[file ...]
							
						

					
				

			

			
				DESCRIPTION

				The cat utility reads files sequentially, writing them to the standard output. The file operands are processed in command-line order.  If file
				is a single dash (‘​-') or absent, cat reads from
				the standard input.
			

		

		
			All formatters must adhere to the general conventions set forth in the Version 1 AT&T UNIX Programmer's Manual, which details the terms that are in bold
			and those that are italicised (rendered with underlines in terminals).
		

		
			Most formatters also support printer-friendly output, usually to PS or PDF.  Some also include HTML or XHTML for web publication.
		

		
			In this book, I'll focus only on contemporary formatters.  Originally, mdoc, as a macro set
			for the roff language, was exclusively formatted by the troff and nroff
			utilities as distributed with BSD UNIX.  Historically, troff was tailored for printers and graphical output, while nroff focussed on terminal output.
		

		
			Most modern utilities, however, encompass both of these capabilities.  
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			groff (GNU troff)
		

		
			The GNU project wrote the groff utility as a reimplementation of ditroff, which encompassed the functionality of the historical nroff and troff
			utilities.  The first version was released in 1990, and it is still actively maintained.  groff is significant in that it is the predominant implementation
			of nroff and troff on
			contemporary UNIX operating systems.
		

		
			On systems with groff installed, both troff and nroff invoke the underlying groff utility.  It is able to produce the classical terminal and PS output,
			along with more recent support for XHTML, HTML, and PDF.  It has strong support
			for non-ASCII output on supporting media.  Consult your local groff manual all possible outputs via the T flag.
		

		
			The mdoc implementation in groff was entirely
			re-written in version 1.17.  Prior to this, input documents had some severe restrictions.  Most notably, macro lines
			were limited to 9 arguments, Bl column macros had a restricted syntax,
			and displays such as Bd could not be nested.
		

		
			The groff utility is supported on both UNIX and non-UNIX operating systems.
		

		
			Examples
		

		
			Paging a manual to a UNIX terminal:
		

		
			groff -Tascii -mandoc file.1 | less
		

		
			To strip the escape-character encoding of output to create clean, printable ASCII output:
		

		
			groff -Tascii -mandoc file.1 | col -b >file.1.txt
		

		
			Generating PS output:
		

		
			groff -Tps -mandoc file.1 >file.1.ps
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:33 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			mandoc (mdocml)
		

		
			The mandoc utility is a specialised mdoc
			formatter: although it also supports some other UNIX manual formats, it does not accept general-purpose roff input.  Development began in 2008 to replace groff with an ISC licensed,
			high-speed reimplementation.
		

		
			mandoc may be invoked as troff or nroff as its command-line arguments
			overlap.  It supports the classical terminal and PS forms, and has very strong support for HTML and XHTML.  PDF output is supported as well.
		

		
			By considering mdoc as a special language, mandoc compiles its input into a representation of semantic content.  This diverges from troff and its descendants, which compile mdoc into its basis form, roff, then into a presentational
			representation.  As such, mandoc is also used for semantically
			querying manual content and for the rigorous validation of manuals.
		

		
			The mandoc utility is supported on both UNIX and non-UNIX operating
			systems.
		

		
			Examples
		

		
			To validate a manual:
		

		
			mandoc -Tlint file.1
		

		
			To page a manual in the current locale (if supported) so that non-ASCII
			special characters render as proper glyphs:
		

		
			mandoc -Tlocale file.1 | less
		

		
			Produce HTML with a style-sheet:
		

		
			mandoc -Thtml -Ostyle=file.css file.1 >file.1.html
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:33 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Project Integration
		

		
			mdoc documents fit perfectly into a UNIX
			development environment.  In general, this is defined by a group of source files that produce executables as compiled
			and linked by make, called a build system.  Sources are usually
			version-controlled using cvs, called revision control.
		

		
			In this section, I discuss methods for integrating mdoc documents into a source-controlled
			build environment.  I'll focus on mandoc as a formatter, but
			provide stubs for using nroff.
		

		
			Our examples will consider a project building a utility foo from its single source file foo.c.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Build System
		

		
			On modern UNIX systems, the method for build management is overwhelmingly
			the make utility.  Although there are two disjoint make implementations in use (namely by for GNU and BSD UNIX
			systems), I examine the syntax common to both.
		

		
			In this section, I'll assume the file Makefile already exists, and is used to build a system
			where one wishes to incorporate mdoc files.
		

		
			all: foo
			

			

			clean:
			

			rm -f foo foo.o
			

			

			install: all
			

			install -m 0755 foo /usr/local/bin
			

			

			foo: foo.o
			

			cc -o foo foo.o
		

		
			A rigorous analysis of this syntax is beyond the scope of this book (do consult your system's documentation for the make command with man make).  It
			defines the targets all, clean, and install: build, clean up, and install the utility, respectively.
		

		
			File Extension
		

		
			First, it's important to settle upon an input and output file extension, as make tracks file status by way of comparing the time-stamp of a file's input (which may be
			multiple files) and output (called the target).  In short, if the target is older than any of the input files, it is
			rebuilt.  The input files are created and maintained by the developer; the output files are built by make.
		

		
			For simplicity, I use the standard .1, .2, and so on convention for
			the target (the output).  I then use .in.1 and so on for input.  Thus, it is necessary to
			notify the make utility of these new extensions before all other rules;
		

		
			.SUFFIXES: .in.1 .1
		

		
			If more categories are built, these would need to be added (e.g., .in.3 .3, etc.).
		

		
			Build Rules
		

		
			A build rule is required to translate input to output.  Let's begin with a general rule to establish that the mdoc syntax is correct.  We'll add this to the target building the main system: this way,
			all changes to the mdoc input file will be syntax-checked when make is invoked.  We'll use mandoc to
			syntax-check the document.
		

		
			.in.1.1:
			

			mandoc -Tlint $<
			

			#nroff -mandoc $< >/dev/null
			

			cp -f $< $@
		

		
			We also need to build the target and clean it.  Assume that foo.1 is the output file and foo.in.1, the input.
		

		
			all: foo foo.1
			

			

			clean:
			

			rm -f foo foo.o foo.1
		

		
			Result
		

		
			Putting these together, the new Makefile is as follows:
		

		
			.SUFFIXES: .in.1 .1
			

			

			all: foo foo.1
			

			

			clean:
			

			rm -f foo foo.o foo.1
			

			

			install: all
			

			install -m 0755 foo /usr/local/bin
			

			install -m 0644 foo.1 /usr/local/share/man/man1
			

			

			foo: foo.o
			

			cc -o foo foo.o
			

			

			.in.1.1:
			

			mandoc -Tlint $<
			

			#nroff -mandoc $< >/dev/null
			

			cp -f $< $@
		

		
			Formatted Output
		

		
			Let's build an HTML manual with the make www
			rule.  For simplicity, we won't install this file; it's merely for instruction.  This rule will translate the built
			manual foo.1 into an HTML file foo.1.html.
		

		
			.SUFFIXES: .in.1 .1 .1.html
		

		
			Let's let our rule include a CSS file.  Note that the traditional nroff utility doesn't include HTML output.
		

		
			foo.1.html: style.css
			

			

			.1.1.html:
			

			mandoc -Thtml -Ostyle=style.css $< >$@
		

		
			The target rule is simply as follows:
		

		
			www: foo.1.html
		

		
			The reason for building from foo.1 instead of foo.in.1 is that we
			may wish to postprocess the foo.1 file after it has been created.  However, this is entirely
			decision of the programmer.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:33 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Revision Control
		

		
			Several examples in this book have covered the topic of integrating mdoc documents into
			revision control systems.  In this section, I cover the few steps required to integrate these documents with cvs.
		

		
			Assume a file foo.in.1. consists of our mdoc source.  I assume, for
			simplicity, that it is licensed with the ISC license and
			copyright-protected, both of which lead the document as a series of comments.
		

		
			.\" Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
			

			.\"
			

			.\" Permission to use, copy, modify, and distribute this software for any
			

			.\" purpose with or without fee is hereby granted, provided that the above
			

			.\" copyright notice and this permission notice appear in all copies.
			

			.\"
			

			.\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
			

			.\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
			

			.\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
			

			.\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
			

			.\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
			

			.\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
			

			.\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
			

			.\"
			

			.Dd August 18 2011
			

			.Dt FOO 1
			

			.Os
		

		
			The first step is to add a useful message to the top of the file as the version of the file.  This is standard practise
			in revision controlled files.
		

		
			.\"$​Id$
			

			.\"
			

			.\" Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
		

		
			Make sure that the first line has a tab character between the leading comment marker and $​Id$.  This sequence is filled in with the file's last editor, revision, and
			checkin date.
		

		
			Some cvs servers (e.g., those in NetBSD and OpenBSD) support the
			Mdocdate sequence.  This is filled by in cvs
			with the check-in date.
		

		
			.Dd $​Mdocdate$
			

			.Dt FOO 1
			

			.Os
		

		
			In performing these two steps, the file's last-modified date and source identifier will be properly filled in by the cvs server.  If your server does not support Mdocdate, you will have to maintain the date by hand, or possibly override the build rule
			for your file.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2012/01/01 15:13:33 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Composition
		

		
			Since the UNIX manual has such a rich history of development, it would be strange were it not to have a significant body
			of supporting tools for composition.  In fact, Version 7 AT&T UNIX was
			bundled with a set of tools, the UNIX Writer's Workbench, specifically for
			composing documents  spell-checking, grammar-checking, and so forth.  Even then, sophisticated editors had long
			since been a pivotal part of UNIX.
		

		
			Although the ed, ex, and vi editors are stipulated by POSIX.1-2008, the Writer's Workbench has long since been discontinued.  Even
			spell-checkers are not standard across modern UNIX systems, although many high-quality editors and composition utilities
			may be downloaded.
		

		
			In short, the situation is messy: composing mdoc documents (and in fact any roff document) is tricky to do without downloading special software.
		

		
			However, one of the best parts of mdoc is that none of these specific tools are necessary: an
			mdoc document is just a text file and may be composed in any editor, and its text contents
			analysed by any utility smart enough to ignore mdoc syntax.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Editing
		

		
			Since mdoc is an ASCII-clean text format, it may be edited in any text editor.  In this
			section, I introduce a variety of editors available on most UNIX systems.
			Since this topic is exhaustively covered in most any introductory UNIX book, I only introduce portable editors.
		

		
			Ed
		

		
			The ed utility is a line editor standardised by POSIX.1-2008.  The concept of a line editor may be familiar to those who have used
			a typewriter or teleprinter, where only the current line of input may be edited (or viewed, in some cases) at a time.
		

		
			Its inclusion is largely for historical reasons, as using ed can be a
			frustrating experience for those accustomed to visual editors.  I don't recommend using this utility for mdoc, although its function as a line editor makes it perfect for the task.
		

		
			Ex, Vi
		

		
			The vi and ex editors were
			powerful additions to the UNIX system: they allowed visual editing of files (versus line editing as with ed).  This editor has inspired a raft of clones, but being
			standardised, some form of the utility is available on all UNIX systems.  Furthermore, the vim clone of vi comes
			bundled with mdoc syntax highlighting.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Spell-checking
		

		
			The right or wrong spelling of terms in technical documents is very important.  Thus, it's always important to carefully
			spell-check your manuals, making sure that both technical and general terms are correctly spelt.  
		

		
			Unfortunately, spell-checking a mdoc document is fairly difficult, as the spell-checker must
			have some knowledge of the language structure to discern text from macros.  Consider spell-checking checking the
			following snippet.
		

		
			.Fl Alu Ar input
		

		
			By now we understand that Fl and Ar are macros.  But it's unreasonable to expect a spell-checker to do so.  Thus,
			spell-checking manuals often raise many false-positives.
		

		
			spell
		

		
			The spell utility is distributed with many BSD UNIX operating systems as a simplistic spell-checker.  In fact, it was
			first distributed with Version 6 AT&T UNIX.  spell preprocesses its
			input with deroff, another historic utility with some functionality of
			stripping roff instructions from files.
		

		
			To print a list of all unknown words, you can explicitly invoke deroff
			and spell as follows:
		

		
			deroff -w file.1 | spell
		

		
			A utility distributed with mandoc, demandoc, is significantly stronger than deroff.  If available, it should be used instead.  It has the same calling syntax of deroff.
		

		
			demandoc -w file.1 | spell
		

		
			You can also maintain a per-manual list of technical terms by using additional word lists.  In the case of file.1, consider a sorted list of words file.1.words we're
			maintaining with special words (such as names).  We could then augment a make rule to automatically make sure additions are spell-checked.
		

		
			file.1: file.1.words
			

			

			.in.1.1:
			

			mandoc -Tlint $<
			

			test -z `demandoc -w $< | spell -b +$@.words`
			

			cp -f $< $@
		

		
			This snippet first makes the build of file.1 depend upon its local word file, file.1.words, a sorted list of words to ignore.  When file.in.1 or
			file.1.words is updated, the rule is executed.  It first makes sure that file.in.1 is well-formed, then spell-checks it against the ignored-words file.
		

		
			The same can be accomplished on systems without mandoc.
		

		
			file.1: file.1.words
			

			

			.in.1.1:
			

			test -z `deroff -w $< | spell -b +$@.words`
			

			cp -f $< $@
		

		
			ispell, aspell
		

		
			Another common spell-checker is ispell and its GNU replacement aspell.  I do not
			suggest using these utilities because of their poor internal support for mdoc.  It's possible,
			however, to send stripped files for checking in a manner similar to spell:
		

		
			demandoc -w file.1 | ispell -l
		

		
			Or with deroff:
		

		
			deroff -w file.1 | ispell -l
		

		
			Both ispell and aspell also have a pipe mode for more meaningful output:
		

		
			demandoc -w file.1 | ispell -a
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Style & Grammar
		

		
			The utilities bundled with the historical UNIX Writer's Workbench also allow
			for grammar and style-checking of mdoc documents  indeed, any document.
		

		
			Like with spelling, these utilities cannot handle mdoc constructions.  Unlike spelling,
			grammar depends on correct flow of terms.  To wit, one must fully process input mdoc documents
			before passing them to such checks.
		

		
			diction
		

		
			The diction utility is rarely distributed with default UNIX operating
			systems, although it may be separately downloaded.  The input to diction is best when it consists of well-formed sentences, which only appear
			when manuals are post-formatted.
		

		
			mandoc file.1 | col -b | tail -n+2 | diction
		

		
			Alternatively, with nroff:
		

		
			nroff -mandoc file.1 | col -b | tail -n+2 | diction
		

		
			This first strips the text decoration (underlined and bold text) from nroff or mandoc with col.  The header is then stripped with tail.  Finally, the formatted output is fed to the diction utility, which analyses text for readability.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Appendices
		

		
			This part consists of appendices to the book.  This will link heavily to external resources, although care is taken to
			provide enough information to make off-line reading meaningful.
		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Appendix: Glossary
		

		
				
				ASCII
			

				
				American Standard Code for Information Interchange.  The predominant computer encoding for the English alphabet.
			

				
				BSD License
			

				
				A permissive open source license used for the BSD UNIX operating systems
				(among many, many other tools).  May refer to either the two-part or three-part (deprecated) form.
			

				
				BSD UNIX
			

				
				A class of free implementations of the UNIX operating system, originally
				deriving from the Version 6 AT&T UNIX.  This class consists primarily of FreeBSD, NetBSD,
				and OpenBSD.  These operating systems are licensed either
				under the BSD license or the ISC
					license.
			

				
				C
			

				
				A programming language developed in 1969 by Dennis Ritchie at AT&T Bell Labs.  This is the language of
				choice for UNIX development.  A compiler for C first appeared in Version 6
				AT&T UNIX, and one is stipulated now by POSIX.1-2008.
			

				
				Cat Pages
			

				
				Manual pages pre-formatted and installed with an operating system.  Historically, the nroff utility was quite slow: pre-formatted pages in a cache reduced
				the wait time for man to display a manual.  This has since become
				the convention for most UNIX operating systems.
			

				
				CDDL
			

				
				The Common Development and Distribution
					License, a free software license.
			

				
				Command Line
			

				
				The text environment for operating UNIX systems.  Often replaced by graphical
				windowing systems such as the X Window System.
			

				
				CSS
			

				
				Cascading style sheet, used primarily to style documents in HTML or XHTML.  The language is a standard maintained by the World Wide Web Consortium.
			

				
				DocBook
			

				
				A documentation system maintained by OASIS and
				developed at docbook.org.
			

				
				DOS Prompt
			

				
				Text (command line) interface to the historical Disk Operating System, usually Microsoft's Disk Operating System
				(MS-DOS).
			

				
				English Spacing
			

				
				The practise of using two spaces between sentences as punctuated by ., !, or ?.  This applies even in the event that a sentence
				is quoted or parenthesised, where the spaces follow the final sentence enclosure.
			

				
				GNU
			

				
				The GNU project is a UNIX-like operating system licensed under
				on the General Public License.
			

				
				GPL
			

				
				The General Public License.  This is the
				license of choice for the GNU project.
			

				
				ISC License
			

				
				A permissive free software license issued by ISC, the Internet
					Systems Consortium.  This is the license of choice for the OpenBSD free UNIX implementation.
			

				
				HTML
			

				
				Hypertext markup language.  A structured mark-up language standardised by the W3C.  This is the predominant language for formatting world wide web
				content.
			

				
				libc
			

				
				The C Standard Library.  A set of functions (including system calls) in
				the C programming language.  Standardised by POSIX, among other standards bodies.
			

				
				Locale
			

				
				A set of parameters defining a locality-specific user interface, such as special characters (glyphs), numerical
				representations, and so on.
			

				
				Man Pages
			

				
				Short form of UNIX manual pages.  System documentation for UNIX systems.
				Usually viewed using the man utility, which pages formatted
				manual documents using to the screen.  Man pages are formatted by a utility such as nroff or mandoc.
			

				
				NetBSD
			

				
				A free BSD UNIX operating system, NetBSD.
			

				
				OpenBSD
			

				
				A free BSD UNIX operating system, OpenBSD.
			

				
				PDF
			

				
				The Portable Document Format language used to format
				documents, usually for printing.
			

				
				POSIX
			

				
				Portable Operating System Interface for Unix.  Most recently released as POSIX.1-2008, IEEE Std 1003.1-2008.
					Informally called UNIX08.  Standards document for all UNIX implementations.
			

				
				PS
			

				
				The PostScript language, usually used
				as a page description language (e.g., printing).
			

				
				Roff
			

				
				A document language written for the original UNIX implementation in 1970.  This
				language was used for text processing.
			

				
				RUNOFF
			

				
				A simple text processing utility for the CTSS operating system, usually paired as TYPSET and RUNOFF, developed before 1965.
			

				
				RTF
			

				
				Rich text format.  Proprietary document file format used in some popular word processors.
			

				
				System Call
			

				
				A machine instruction that triggers the operating system to perform a privileged operation on behalf of the
				user.  A typical example is to write a region of memory to a file.  In the C
					standard library, these instructions are encoded as function calls such as write.
			

				
				Terminal
			

				
				The command line environment on a computer.  This can either refer to a
				terminal utility run within a graphical environment or the computer screen itself in text mode.
			

				
				UNIX
			

				
				Computer system originally developed by AT&T Bell Labs in 1969.
				Modern open-source derivations include GNU/Linux, FreeBSD, NetBSD,
				OpenBSD, etc.
			

				
				UNIX Programmer's Manual
			

				
				A historical manual for programming and operating the UNIX operating system.
				The First Edition, 1971, is
				preserved for reading.
			

				
				WWB
			

				
				The Writer's Workbench.  This was a set of writing utilities first distributed in the Seventh Edition of the UNIX operating system.
			

				
				XHTML
			

				
				Extensible Hypertext markup language.  XML-based form of the popular HTML
				format.  Standardised by the W3C.
			

		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Appendix: Macros
		

		
			This table consists of brief descriptions of mdoc macros referenced in this book (meaning:
			this is not a complete list!), then links to full descriptions according to the mdoc reference on http://mdocml.bsd.lv.  Disclaimer: I'm the principle author of this
			system. 
		

		
				
				Ap
			

				
				Insert an apostrophe.  Reference: Ap.
			

				
				Ar
			

				
				Argument to a command or flag.  Reference: Ar.
			

				
				Bd
			

				
				Begin a display.  Reference: Bd.
			

				
				Bl
			

				
				Begin a list.  Reference: Bl.
			

				
				Bq
			

				
				Square-bracket arguments.  Reference: Bq.
			

				
				Bx
			

				
				BSD UNIX text.  Reference: Bx.
			

				
				Dd
			

				
				Date of manual's last edit.  Reference: Dd.
			

				
				Dl
			

				
				Display a line of literal text.  Reference: Dl.
			

				
				Dt
			

				
				Title and category of a manual.  Reference: Dt.
			

				
				Dv
			

				
				Constant-value variables.  Reference: Dv.
			

				
				Ed
			

				
				End a display.  Reference: Ed.
			

				
				El
			

				
				End a list.  Reference: El.
			

				
				Em
			

				
				Text to be emphasised (presentational).  Reference: Em.
			

				
				Er
			

				
				Error constant.  Reference: Er.
			

				
				Ev
			

				
				Environment variable.  Reference: Ev.
			

				
				Ex
			

				
				Exit code of a command.  Reference: Ex.
			

				
				Fa
			

				
				Function argument.  Reference: Fa.
			

				
				Fc
			

				
				Close multi-line function prototype.  Reference: Fc.
			

				
				Fd
			

				
				A preprocessor macro definition.  Reference: Fd.
			

				
				Fl
			

				
				Command flag (switch).  Reference: Fl.
			

				
				Fn
			

				
				Function name.  Reference: Fn.
			

				
				Fo
			

				
				Open multi-line function prototype.  Reference: Fo.
			

				
				Ft
			

				
				Function type.  Reference: Ft.
			

				
				In
			

				
				Include file (header file).  Reference: In.
			

				
				Lb
			

				
				Library name.  Reference: Lb.
			

				
				Li
			

				
				Literal text (presentational).  Reference: Li.
			

				
				Nd
			

				
				A one-line description of the material.  Reference: Nd.
			

				
				Nm
			

				
				Set or get name of documented component.  Reference: Nm.
			

				
				Ns
			

				
				Suppress the following space and reset formatting.  Reference: Ns.
			

				
				Os
			

				
				Operating system applying to manual.  Reference: Os.
			

				
				It
			

				
				List item.  Reference: It.
			

				
				Oc
			

				
				Close an optional part block.  Reference: Oc.
			

				
				Oo
			

				
				Open an optional part block.  Reference: Oo.
			

				
				Op
			

				
				Optional part of a command invocation.  Reference: Op.
			

				
				Ox
			

				
				Format the OpenBSD operating system name.  Reference: Ox.
			

				
				Pp
			

				
				Separate paragraphs with vertical space.  Reference: Pp.
			

				
				Pq
			

				
				Parenthesise arguments.  Reference: Pq.
			

				
				Ql
			

				
				Enclose literal argument in single quotes.  Reference: Ql.
			

				
				Qq
			

				
				Enclose arguments in regular double quotes.  Reference: Qq.
			

				
				Rs
			

				
				Begin a reference (bibliographic) block.  Reference: Rs.
			

				
				Rv
			

				
				Function return value.  Reference: Rv.
			

				
				Sh
			

				
				Begin a manual section.  Reference: Sh.
			

				
				Sq
			

				
				Single-quote arguments.  Reference: Sq.
			

				
				Ss
			

				
				Begin a manual subsection.  Reference: Ss.
			

				
				St
			

				
				Print a standard name.  Reference: St.
			

				
				Va
			

				
				Variable name.  Reference: Va.
			

				
				Vt
			

				
				Variable type.  Reference: Vt.
			

				
				Xr
			

				
				Manual cross-reference.  Reference: Xr.
			

		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2011/11/04 01:06:28 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	
		
			Appendix: Commands
		

		
			This is a list of all commands mentioned in this book and how to find them on-line.  All referenced utilities are
			open-source.
		

		
				
				Aspell
			

				
				A replacement of ispell with greater word-suggestion power and support for
				non-ASCII input.  Available at aspell.net under the GPL.
			

				
				Cat
			

				
				Output a file directly to the terminal.  This utility is
				standardised by POSIX.1-2008.
			

				
				Col
			

				
				Filters line-feeds, usually used to strip backspaces from encoded documents.  Originally in Version 6 AT&T
				UNIX, standardised in POSIX.1-2008.
			

				
				Cvs
			

				
				A revision management system (the concurrent version system).  Originally a client-server extension to prior
				revision systems.  Non-standard.  Available under the GPL at savannah.nongnu.org/projects/cvs or
				the ISC license at www.opencvs.org.
			

				
				Echo
			

				
				Echo input arguments back to the terminal.  This utility is
				standardised by POSIX.1-2008.
			

				
				Demandoc
			

				
				Remove all mdoc (and other UNIX manual format) control statements from a file by
				formally parsing input (via mandoc).  Built to replace deroff for mdoc UNIX manuals.  Non-standard.  Available
				under the ISC license at mdocml.bsd.lv.
			

				
				Deroff
			

				
				Remove [most] roff control statements from a file.  This utility uses heuristics
				instead of properly parsing its input.  Originally in Version 7 AT&T UNIX (if not before?) and used heavily
				by the Writer's Workbench.  Non-standard. Available under the Lucent
				Public License at heirloom.sf.net/tools.html and under the
				GPL at marmaro.de/prog/deroff.
			

				
				Diction
			

				
				Checks the diction of a (German or English) document.  Originally in the Version 6 AT&T UNIX Writer's Workbench.  Non-standard. A GPL
				version is available at www.gnu.org/s/diction.
			

				
				Ditroff
			

				
				A historical utility merging the code-bases of the original nroff and troff into a device-independent utility.  All modern nroff and troff utilities are implemented by a
				ditroff implementation such as groff.  A version
				of the pre-groff utility is available under the Lucent Public License at heirloom.sf.net/doctools.html.
			

				
				Dump
			

				
				Backup a file-system.  This utility isn't standardised, but appears on most modern UNIX implementations regardless.  Dumped file-systems may be restored with
				the dual restore utility.
			

				
				Ed
			

				
				Edit a file line by line on a terminal.  This utility is
				standardised by POSIX.1-2008.  It is the first editor to be
				bundled with UNIX, extending to Version 1 AT&T UNIX.
			

				
				Ex
			

				
				Extends ed to operate in visual (screen) mode.  This utility is standardised
				by POSIX.1-2008.  It first appeared in Version 8 AT&T UNIX, and is usually invoked as a special mode of vi.
			

				
				Fsck
			

				
				A file-system checker.  Although not standardised, this utility is present on most UNIX systems.
			

				
				Groff
			

				
				The GNU re-implementation of ditroff, thus providing troff and nroff utilities.  Non-standard.  Available under the GPL at www.gnu.org/s/groff.
			

				
				Ispell
			

				
				A re-write of spell for international dictionaries.  Non-standard.
				Available at lasr.cs.ucla.edu/geoff/ispell.html under its own
				license.
			

				
				Ls
			

				
				List the contents of a file-system directory.  This utility is standardised by POSIX.1-2008.
			

				
				Make
			

				
				A build system that uses a graph of dependencies (by a file's last modified date) to determine when a target
				needs to be rebuilt.  This utility is standardised by POSIX.1-2008
				and was first released in Version 7 AT&T UNIX.  It has two
				somewhat incompatible implementations, as the standardised syntax is fairly limited: under the GPL at www.gnu.org/software/make, referred to as GNU make; or distributed with BSD UNIX systems as BSD make.
			

				
				Man
			

				
				A POSIX.1-2008 standardised utility for viewing UNIX manpages.
				The standard document only specifies that it accepts a name and returns output: no more.  man usually looks up the manual to display in a set of directories reserved for
				manuals, then either pages pre-formatted manuals to the screen (cat pages) or formats it on the spot with nroff
				or mandoc.
			

				
				Mandoc
			

				
				A specialised formatter for UNIX manuals designed to replace groff for UNIX
				manual input.  Non-standard.  ISC licensed.  Available at mdocml.bsd.lv.
			

				
				Nroff
			

				
				A re-write of the original formatter for the roff language (the name deriving from new
				roff).  Built to accomodate for terminals.  Modern uses of this
				utility are actually through a re-write, ditroff.
			

				
				Restore
			

				
				The dual to dump: restores a dumped file-system.  This utility is not
				standardised, but found on most UNIX operating systems anyway.
			

				
				Sccs
			

				
				Historically the dominant revision control system for UNIX systems,
				and standardised by POSIX.1-2008.  Despite being standardised, few
				UNIX systems include this utility.  It has largely been replaced by cvs.
			

				
				Spell
			

				
				The original (English-only) UNIX spell-checker distributed with Version 6 AT&T UNIX.  Non-standard. BSD licensed and available at code.google.com/p/unix-spell.  Also may be emulated by
				ispell and aspell.
			

				
				Tail
			

				
				A standard POSIX.1-2008 utility for outputting parts of a file.
			

				
				Troff
			

				
				Traditional name of a formatter for the roff langage.  First released in Version 6
				AT&T UNIX as a printer and graphical-device version of nroff (the name
				deriving from typesetter roff).  Modern uses of this utility are actually through a re-write, ditroff.
			

				
				Vi
			

				
				Extends ed to operate in fully visual (screen) mode, extending ex in its display handling capability.  This utility is standardised by
				POSIX.1-2008.  It first appeared in Version 8 AT&T UNIX.
			

				
				Vim
			

				
				A popular implementation of the vi editor.  It is distributed under a custom
				GPL-like license at www.vim.org.
			

		

		
			
				
						Contents
						Next
						Home
						History
				

			
		

		
			Last edited by $Author: kristaps $ on $Date: 2014/04/07 09:33:39 $.  Copyright  2011, Kristaps Dzonsons.  CC BY-SA.
		

	OPS/external.png





